Work Allocation

Mark Greenstreet

CpSc 448B - Oct. 27, 2011

Lecture Outline

Work Allocation

- Finishing Reduce and Scan
- Static Allocation (matrices and other arrays)
- Stripes
- Blocks
- Block-Cyclic
- Irregular meshes
- Dynamic Allocation
- Work Queues
- Work Stealing
- Trees

Generalized Reduce

- reduce(Leaf, Combine, Root)

Example: Generalized Reduce in Erlang

Example: Century Primes

Paritioning Matrices

A matrix

row-
stripes

columnstripes

blocks

blockcyclic

Matrix-Multiply

- Examined in September 22 lecture.
- Consider distributing a $N \times N$ matrix over P processors:
- If arranged as P strips of N / P rows,
* then computing a matrix multiplication requires each process to send and receive $P-1$ messages of size N^{2} / P.
- If arranged as $\sqrt{P} \times \sqrt{P}$ blocks of size $(N / \sqrt{P}) \times(N / \sqrt{P})$,
\star then computing a matrix multiplication requires each process to send and receive \sqrt{P} messages of size N^{2} / P.
- In practice, communication cost much more than computation.
\star Thus, the second arrangement achieves good speed-ups for smaller matrices than the first.
* Both approaches have the same asymptotic performance.
^ What does this say about Amdahl's law?

LU-Decomposition

- Given a matrix, A, factor into matrices L, U, and P such that $P A=L U$ where
- L is lower-triangular (all elements above the main diagonal are 0).
- U is upper-triangular (all elements below the main diagonal are 0).
- P is a permutaion matrix (rearranges the rows of A).
- Why?
- We often want to solve linear systems:

Given A and y, find x such that $A x=y$.

- If we can factor A so that $P A=L U$, then we get:

$$
x=U^{-1} L^{-1} P y
$$

* Computing $w=$ Py is very easy (just a permutation).
\star Computing $z=L^{-1} w$ is easy $O\left(N^{2}\right)$ operations.
\star Computing $x=U^{-1} z$ is easy $O\left(N^{2}\right)$ more operations.

LU-Decomposition

- Find the largest element in the first column (a reduce operation).
- Swap the row for that column with the first row, and scale to make the $A_{1,1}=1$.
- Eliminate all elements in the first column except for $A_{1,1}$.
- The multipliers for this form a column of the L matrix.
- The main diagonal and the elements above it form the U matrix.
- Now, repeat for the $(N-1) \times(N-1)$ submatrix.

LU Work Allocation

More meshes

- matrices used for linear algebra problems
- also used for representing spatial data and finite element computation.
- multi-resolution methods are common, but present extra challenges for distributing data and work.
- This isn't a scientific computing course:
- So, l'll just let you know that the issues are there.
- Lots of work has been done in this area.
- When/if you need it, you can check the current state-of-the-art.

Dynamic Scheduling - Work Queues

Trees and Capping

