Work Allocation

Mark Greenstreet

CpSc 448B - Oct. 27, 2011

Lecture Outline

Work Allocation

- Finishing Reduce and Scan
- Static Allocation (matrices and other arrays)
 - Stripes
 - Blocks
 - Block-Cyclic
 - Irregular meshes
- Dynamic Allocation
 - Work Queues
 - Work Stealing
 - Trees

Generalized Reduce

• reduce(Leaf, Combine, Root)

Example: Generalized Reduce in Erlang

Example: Century Primes

Paritioning Matrices

Matrix-Multiply

- Examined in September 22 lecture.
- Consider distributing a $N \times N$ matrix over *P* processors:
 - If arranged as P strips of N/P rows,
 - ★ then computing a matrix multiplication requires each process to send and receive P - 1 messages of size N^2/P .
 - If arranged as $\sqrt{P} \times \sqrt{P}$ blocks of size $(N/\sqrt{P}) \times (N/\sqrt{P})$,
 - * then computing a matrix multiplication requires each process to send and receive \sqrt{P} messages of size N^2/P .
 - ► In practice, communication cost much more than computation.
 - Thus, the second arrangement achieves good speed-ups for smaller matrices than the first.
 - ★ Both approaches have the same asymptotic performance.
 - What does this say about Amdahl's law?

LU-Decomposition

- Given a matrix, A, factor into matrices L, U, and P such that PA = LU where
 - L is lower-triangular (all elements above the main diagonal are 0).
 - ► *U* is upper-triangular (all elements below the main diagonal are 0).
 - ► *P* is a permutaion matrix (rearranges the rows of *A*).
- Why?
 - We often want to solve linear systems:

Given A and y, find x such that Ax = y.

• If we can factor A so that PA = LU, then we get:

$$x = U^{-1}L^{-1}Py$$

- * Computing w = Py is very easy (just a permutation).
- ★ Computing $z = L^{-1}w$ is easy $O(N^2)$ operations.
- ★ Computing $x = U^{-1}z$ is easy $O(N^2)$ more operations.

LU-Decomposition

- Find the largest element in the first column (a reduce operation).
- Swap the row for that column with the first row, and scale to make the $A_{1,1} = 1$.
- Eliminate all elements in the first column except for A_{1,1}.
 - The multipliers for this form a column of the *L* matrix.
 - ► The main diagonal and the elements above it form the *U* matrix.
- Now, repeat for the $(N-1) \times (N-1)$ submatrix.

LU Work Allocation

Mark Greenstreet ()

More meshes

- matrices used for linear algebra problems
- also used for representing spatial data and finite element computation.
- multi-resolution methods are common, but present extra challenges for distributing data and work.
- This isn't a scientific computing course:
 - So, I'll just let you know that the issues are there.
 - Lots of work has been done in this area.
 - When/if you need it, you can check the current state-of-the-art.

Dynamic Scheduling – Work Queues

Trees and Capping

Mark Greenstreet ()