
Peril-L, Reduce, and Scan

Mark Greenstreet

CpSc 448B – Oct. 20, 2011

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 0 / 22

Lecture Outline

Peril-L
I A notation based on the CTA model
I Control and synchronization
I Local vs. remote data access.
I Reduce and Scan operators

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 1 / 22

Peril-L

“Pidgin” langauge for describing parallel algorithms and programs.
Based on CTA model
Uses C-like language with extensions:

I Each processor has its own, local memory
I One processor can access the memory of another processor, but

such global accesses take λ units of time.

I forall, exclusive and barrier
I distinction between global and local memory
I reduce and scan operations

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 2 / 22

CTA: Summary

CPU

MEM

net

CPU

MEM

net

CPU

MEM

net

CPU

MEM

net

CPU

MEM

net

CPU

MEM

net

CPU

MEM

net

CPU

MEM

net

CPU

MEM

net

CPU

MEM

net

CPU

MEM

net

CPU

MEM

net

CTA Peril-L
Fixed number of processors Focus on scalable parallelism
Each processor is a RAM Unit cost for local operations
Explicit communication Identify remote accesses
Bounded-degree network No direct correspondence

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 3 / 22

forall

Expressing multiple threads in Peril-L:

forall (integer variable in range) {
body

}

One thread is created for each value in range.
The bodies for each thread execute in parallel.
forall statements may be nested.
There is an implicit barrier at the end of the loop:

I The program does not progress beyond the forall statement until
all threads have completed their body.

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 4 / 22

Say hello – first attempt

Program source:
char **who = { "Anne", "Bob", "Charlie", "Diane",

"Elmer", "Francine" };
forall(i in (0..5)) {

printf(‘‘%s says ‘hello’.\n’’, who[i]);
}

Output:
Diane says ‘hello’ Bob.
AnnElmer says says ‘helloFrancine says Charliee’
say ‘‘‘‘hehehehe ssays lllllloo’.
l’lo’o’...

.

Why?

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 5 / 22

exclusive

exclusive { body }
Only one thread can execute body at a time.

I Other threads will block.
I In other words, exclusive provides mutual exclusion.

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 6 / 22

Say hello, second attempt

Program source:
char **who = { "Anne", "Bob", "Charlie", "Diane",

"Elmer", "Francine" };
forall(i in (0..5)) {

exclusive {
printf(‘‘%s says ‘hello’.\n’’, who[i]);

}
}

Output:
Elmer says ‘hello’.
Diane says ‘hello’.
Anne says ‘hello’.
Charlie says ‘hello’.
Francine says ‘hello’.
Bob says ‘hello’.

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 7 / 22

barriers

A forall statement can include a barrier statement.
All threads of the forall must reach the barrier before any
threads continue beyond it.

char **who = { "Anne", "Bob", "Charlie", "Diane", "Elmer", "Francine" };
forall(i in (0..5)) {

exclusive {
printf(‘‘%s says ‘hello’.\n’’, who[i]);

}
barrier;
exclusive {

printf(‘‘%s says ‘good-bye’.\n’’, who[i]);
}

}

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 8 / 22

Variables and Memory

global(i.e. shared) and local (i.e. per-thread) variables.
localize

EF (“empty/full”) variables.

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 9 / 22

Global and local variables

If a variable is declared outside of a forall statement, it is global
and shared by all threads of the forall.

I In keeping with the CTA model, an access to a global variable cost
λ time units.

I Global variables are indicated by underlining the variable name.
If a variable is declared in the body of a forall statement, it is
local. There is a separate, private instance of the variable for each
thread.

I A local variable can be accessed in unit time.

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 10 / 22

Localize

In the CTA model, there are global variables but no global
memory.
The localize statement is used to partition the storage of an
array amongst the processors of a forall loop.

int allData[n];
forall(threadID in (0..P-1)) {

int size = mySize(allData[], 0);
int locData[size] = localize(allData[]);
...

}

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 11 / 22

Localize (details)

localize tells the compiler that it should distribute the storage of
the array amongst the processors of the forall.
It doesn’t actually move data from some (non-existent) global
store to local memory; therefore, this declaration doesn’t take time
at runtime.
References to the local portion of the array, e.g. locData, are
local to the processor and performed in unit time.

I Array indices for the local array start a 0 for each thread, regardless
of where the reference is in the global array.

I localToGlobal(allData, i, j, ...), returns the global
index (flattening the array to one dimension, I assume),
corresponding to the local indices i, j,

References to the global array, e.g. allData are global
references and take λ time units.

I Concurrently accessing an array by its localized and global versions
is a bad idea.

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 12 / 22

Empty/Full variables

An empty/full variable is a global variable for implementing flow control
(e.g. unbuffered messages).

Writing to an empty variable gives the variable a value, and fills it.

I Attempting to write to a full variable stalls until the variable is read
and thus becomes empty.

Reading from a full variable gives gets the value and marks the variable
as empty.

I Attempting to read from an empty variable stalls until the variable is
written and thus becomes full.

Reads and writes of empty/full variables are global operations that take
λ time units (plus any time for stalls).

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 13 / 22

Empty/Full in Peril-L

In Peril-L, an empty/full variable is a global variable with a prime at the
end of its name:

E.g. int q’ = 2;

If initialized, then initially full, with that value.
Otherwise, intially empty.
Full/empty values can be arrays and/or structs, in which case all
elements and/or fields are full-empty variables.

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 14 / 22

Reduce

Reduce: op/ localExpression
I Each thread in the current forall evaluates localExpression

and the results are combined using op to produce the value for the
expression.

I All threads get the same value – this value can be assigned to a
local or global variable or used in a bigger expression.

Scan: op\ localExpression
I Each thread in the current forall evaluates localExpression

and the results are combined using op.
I Thread i gets the result of applying op to the values of
localExpression for threads 0 . . .i.

Both reduce and scan also function as barriers.

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 15 / 22

Reduce Example
double globalData[] = {1.0, ...M};
forall(i in (0..P-1)) {

localData = localize(globalData);
localSum = 0.0;
n = mySize(globalData, 0);
for(j = 0; i < n; i++)

localSum += localData[j];
grandTotal = +/ localSum;

}

Assume M = 1000000 and P = 10.
After the inner for-loop, thread i will have

localSum =

(i+1)∗100000∑
j=i∗100000+1

j

= 100000 ∗ (100000 ∗ i + 50000.5)

After the reduce, each thread will have grandTotal (a separate,
local variable for each thread) equal to the sum of all the localSum
variables, i.e. 500000500000.Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 16 / 22

Scan Example
double globalData[] = {1.0, ...M};
forall(i in (0..P-1)) {

localData = localize(globalData);
localSum = 0.0;
n = mySize(globalData, 0);
for(j = 0; j < n; i++)

localSum += localData[i];
grandTotal = +\ localSum;

}

Assume M = 100 and P = 10.
After the inner for-loop, thread i will have
localSum = 100 ∗ i + 55 (i.e. thread 0 gets 55, thread 1 gets
155, thread 2 gets 255, . . .).
After the scan, each thread will have grandTotal (a separate,
local variable for each thread) equal to the sum of all the localSum
for threads up to and including its own:
thread 0 gets 55, thread 1 gets 210, thread 3 gets 465,
Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 17 / 22

Reduce In Peril-L

1.int nodeval′[P];
2.
3.forall(index in(0..P-1)) {
4. int tally;
5. stride=1;
6. tally = compute local tally;
7. while(stride < P) { % reduce tree
8. if(index%(2*stride) == 0) {
9. tally = tally + nodeval′[index+stride];

10. stride = 2*stride;
11. } else {
12. nodeval′[index]=tally;
13. ;
14. } % if(index. . .)
15. } % while(stride ¡ P)
16.} % forall(index. . .)

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 18 / 22

Generalized Reduce

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 19 / 22

Generalized Scan

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 20 / 22

Announcements and reminders

Oct. 27: work allocation
Read the rest of Lin & Snyder, Chapter 5, Assigning Work to
Processes Statically through the end of Chapter Summary.
Nov. 1: introduction to MPI

I Read Lin & Snyder, Chapter 7, MPI: The Message Passing
Interface through the end of MPI: The Message Passing Interface
→ Safety Issues (pp. 202–229).

I Alan Wagner will be the guess lecturer on Nov. 1.
I More info on MPI at

https://computing.llnl.gov/tutorials/mpi/

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 21 / 22

https://computing.llnl.gov/tutorials/mpi/

Review

How does Peril-L distinguish local and remote memory accesses?
Does the Peril-L machine model include local memory?
Does the Peril-L machine model include global memory?
What is an empty/full variable?
Try the examples from Lin & Snyder chapter 5, The Reduce and
Scan Abstractions→ Example of Generalize Reduce and Scan.
Peril-L has an exclusive operator. Think about how you would
implement this in Erlang. For example, you might want a process
to be able to “lock” stdout while writing a multi-line message.
Hint: use a process.

Mark Greenstreet () Peril-L, Reduce, and Scan CpSc 448B – Oct. 20, 2011 22 / 22

