Models of Parallel Computation

Mark Greenstreet

CpSc 448B — Oct. 18, 2011

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 0/28

Lecture Outline

@ The RAM Model of Sequential Computation
@ Models of Parallel Computation

» PRAM
» CTA
» logP

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 1/28

The Big Picture

start

paradigms

software

Parallelandia

For more details, see the midterm review:

http://www.ugrad.cs.ubc.ca/~cs448b/exams/midterm-review.pdf

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 2/28

http://www.ugrad.cs.ubc.ca/~cs448b/exams/midterm-review.pdf

The RAM Model

RAM = Random Access Machine

@ Axioms of the model

» Machines work on words of a “reasonable” size.
» A machine can perform a “reasonable” operation on a word as a
single step.
* such operations include addition, subtraction, multiplication, division,
comparisons, bitwise logical operations, bitwise shifts and rotates.
» The machine has an unbounded amount of memory.

* A memory address is a “word” as described above.
* Reading or writing a word of memory can be done in a single step.

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 3/28

The Relevance of the RAM Model

@ If a single step of a RAM corresponds (to within a factor close to
1) to a single step of a real machine.

@ Then algorithms that are efficient on a RAM will also be efficient
on a real machine.
@ Historically, this assumption has held up pretty well.
» For example, mergesort and quicksort are better than
bubblesort on a RAM and on real machines, and the RAM model

predicts the advantage quite accurately.
» Likewise, for many other algorithms

* graph algorithms, matrix computations, dynamic programming,
* hard on a RAM generally means hard on a real machine as well: NP
complete problems, undecidable problems,

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 4/28

The Irrelevance of the RAM Model

The RAM model is based on assumptions that don’t correspond to
physical reality:
@ Memory access time is highly non-uniform.

» Architects make heroic efforts to preserve the illusion of uniform
access time fast memory —
* caches, out-of-order execution, prefetching, ...
» — but the illusion is getting harder and harder to maintain.
* Algorithms that randomly access large data sets run much slower
than more localized algorithms.
* Growing memory size and processor speeds means that more and

more algorithms have performance that is sensitive to the memory
hierarchy.

@ The RAM model does not account for energy:

» Energy is the critical factor in determining the performance of a
computation.

» The energy to perform an operation drops rapidly with the amount
of time allowed to perform the operation.

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 5/28

The PRAM Model

PRAM = Parallel Random Access Machine
@ Axioms of the model

» A computer is composed of multiple processors and a shared
memory.
» The processors are like those from the RAM model.
* The processors operate in lockstep.
* |.e. for each k > 0, all processors perform their k™ step at the same
time.
» The memory allows each processor to perform a read or write in a
single step.
* Multiple reads and writes can be performed in the same cycle.
* |If each processor accesses a different word, the model is simple.
* |If two or more processors try to access the same word on the same
step, then we get a bunch of possible models:
EREW: Exclusive-Read, Exclusive-Write
CREW: Concurrent-Read, Exclusive-Write
CRCW: Concurrent-Read, Concurrent-Write

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 6/28

EREW, CREW, and CRCW

@ EREW: Exclusive-Read, Exclusive-Write
» If two processors access the same location on the same step,
* then the machine fails.
@ CREW: Concurrent-Read, Exclusive-Write
» Multiple machines can read the same location at the same time,
and they all get the same value.
» At most one machine can try to write a particular location on any
given step.
» If one processor writes to a memory location and another tries to
read or write that location on the same step,
* then the machine fails.

@ CRCW: Concurrent-Read, Concurrent-Write
If two or more machines try to write the same memory word at the same
time, then if they are all writing the same value, that value will be written.
Otherwise,
» the machine fails, or
» one of the writes “wins”, or
> an arbitrary value is written to that address.

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 7/28

Fun with the PRAM Model

Finding the maximum element of an array of N elements.
@ The obvious approach

» Do a reduce.
» Use N/2 processors to compute the result in ©(log, N) time.

max(x(?)...x(7))

max

/

max max
max max max max

PR PR PRI PR
x0) x1) x2) x3) x4 x5 x(6) x(7)

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011

8/28

A Valiant Solution

L. Valiant, 1975
@ Use P processors.
@ Step 1:

» Divide the N elements into N/3 sets of size 3.

» Assign 3 processors to each set, and perform all three pairwise
comparisons in parallel.

» Mark all the “losers” (requires a CRCW PRAM) and move the max
of each set of three to a fixed location.

@ Step 2:
» We now have N/3 elements left and still have N processors.
» We can make groups of 7 elements, and have 21 processors per
Co 7 .
group, which is enough to perform all (>) = 21 pairwise

comparisons in a single step.
» Thus, in O(1) time we move the max of each set to a fixed location.
We now have N/21 elements left to consider.

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 9/28

Visualizing Valiant

max(x(0)...x(20)) max from group of 7
(21 parallel comparisons)

group of 7 values

max from each group
(3 parallel comparisons/group)

groups of 3 values

N values, N processors

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 10/28

A Valiant Solution

@ Subsequent steps:
» On step k, we have N/my elements left.
» We can make groups of 2my + 1 elements, and have
2my + 1
2
enough to perform all pairwise comparisons in a single step.
» We now have N/(mx(2my + 1)) elements to consider.
@ Run-time:
» The sparsity is squared at each step.
» It follows that the algorithm requires O(log log N).
» Valiant showed a matching lower bound and extended the results to
show merging is (loglog N) and sorting is #(log N) on a CRCW
PRAM.

me(2me +1) = processors per group, which is

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 11/28

The Irrelevance of the PRAM Model

The PRAM model is based on assumptions that don’t correspond to
physical reality:
@ Connecting N processors with memory requires a switching network.
» Logic gates have bounded fan-in and fan-out.
» = and switch fabric with N inputs (and/or N outputs) must have
depth of at least log N.
» This gives a lower bound on memory access time of Q(log N).
@ Processors exist in physical space
N processors take up Q(N) volume.
The processor has a diameter of Q(N'/3).
Signals travel at a speed of at most ¢ (the speed of light).
This gives a lower bound on memory access time of Q(N'/3).
@ Valiant acknowledged that he was neglecting these issues in his original paper.

» but that didn’t deter lots of results being published for the PRAM
model.

v vy vYyy

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 12/28

The CTA Model

CTA = Candidate Type Architecture
@ Axioms of the model

» A computer is composed of multiple processors.
» Each processor has

* Local memory that can be accessed in a single processor step (like
the RAM model).
* A small number of connections to an communications network.
» A communication mechanism:
* Conveying a value between processors takes A time steps.
*) can range from 102 to 10° or more depending on the architecture.
* The exact communication mechanism is not specified.

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 13/28

Communication Mechanisms

@ Shared Memory: A ~ 100 — 1000.
@ One-sided communication:

» Used on some supercomputers (e.g. Cray).

» put (addr, data) : copies data into the memory of a remote
node.

» read (addr) : reads data from the memory of a remote node.

» Called “one-sided” because the remote-node doesn’t do anything to
receive or transmit the data involved.

@ Message passing: A ~ 5000 — 10000

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 14/28

Latency vs. Throughput

@ Definitions:

» Latency is the amount of time it takes to perform an operation from

start to finish.

» Throughput is the number of operations that can be performed per

unit time.
@ Relations:
» If we did everything sequentially, we would have

1
Throughput Wncy
» But, with pipelined and/or parallel execution, we can have

1

Throughput > Wncy

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011

15/28

Latency vs. Throughput

@ Why does it matter:

» Throughput (a.k.a. peak performance) is usually a lousy
measurement of real performance: real programs have some
latency critical operations.

» Latency does not completely capture the performance of a parallel
architecture

* [f it take A time units to send convey one word between two
processors,

* We can probably send two words in < 2 time units.

* On the other hand, can we send a million words in = A time units?

* Bandwidth matters.

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 16/28

The LogP Model

@ Motivation (1993): convergence of parallel architectures
» Individual nodes have microprocessors and memory of a

workstation or PC.
» A large parallel machine had at most 2000 such nodes.
» Point-to-point interconnect —
* Network bandwidth much lower than memory bandwidth.
* Network latency much higher than memory latency.
* Relatively small network diameter: 5 to 20 “hops” for a 1000 node

machine.
@ The model parameters:
L the latency of the communication network fabric
o the overhead of a communication action
g the bandwidth of the communication network
P the number of processors

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011

17/28

LogP Example: Broadcast

LogP (q=g-0) =

time savings of optimal schedule compared with simple tree i+
@ LogP breaks communication into more detailed phases than CTA.

@ If g — ois enough smaller than L, then LogP shows that a the
simple binary tree isn’t exactly optimal for broadcast.
@ Example: L=10,0=2,9=3, P =38:
» Simple binary tree completes broadcast in 3L + 60 = 42 time units.
» Optimized tree completes in 28 time units
* p0 sends to p1, p2, p3, p4, p5, and p7
* p1 sends to p6
» Is it worth it?

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 18/28

LogP Example: FFT (1/6)

x(0) ¥(0) _
¥8) @ The Fast-Fourier

x(1) \A\m »

. y form i di
DU e
e % ~_ 7 ¥2) processing

(5) %}Yzz ly" < W10) applications:

(6) @) N ¥(6) » audio signals
i(7) ’;‘;‘;‘;‘;’;W» y(14) » wi-fi modulation
) S ¥() and

x(9) ”g@%‘%ﬁmvw %9 demodulation
x(10) I)A”A‘A\\\mA’ ¥(5) » image filtering

x(11) ”)X‘X\\\\‘X‘XW» y(13) > voice recognition
>

x(12) y3)

x(13) ”‘\\"‘m y(11) @ The data flow of the

PR VANS= ¥ FFT has the
YA

x(15) y(13) “butterfly” structure
shown on the left.

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 19/28

LogP Example: FFT (2/6)

x(0) ¥y(0) *processor 0
®processor 1

R AN ANt

x(2) \'A\v”A‘ ¥(4) ® processor 2

x(3) \"IA“ » y(12) *processor 3

x(4) \\\VV X:‘;‘ m ¥2) 7 }:(())Crfallmumcatlon
x(5) k‘;’%{v‘%"‘%‘ ¥(10) inter—processor
x(6) V%###V ZaN ¥(6) communication
x(7) ‘M‘MW» ¥14) e First attempt to

¥ LIAS S A== parallelize:

i JENS 2SS " - assign tocks o
o SIS S == ows t0

. /1//ANNNDOOO) Iprocefssors.
M INSS ==, s

S communication
MYV VAN y(7) at the left
x(15) RV y(1s) » everything local
at the right.

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 20/28

LogP Example: FFT (3/6)

x(0) ¥y(0) *processor 0
®processor 1

R AN AN
x(2) \'IK\V”A‘ y(4) :processorg
x(3) N 12 processor

\ XV‘X‘ — ¥ local

) @) 7 t

w5 B RS = o) B

x(6) \’%’#‘%%{”IA“A‘ ¥(6) communication

x(7) v‘v’v’v‘v‘%‘#, g ¥4 @ Second attempt to
" i

(1) parallelize:
:1(2 ’};’?}‘;m‘w ig j » interleave rows
X Yy
x(11) ;;"%“X‘X‘Xm y(13) Sggggsors
x(12)

3) [
s NG =00 e

> on the left

x(14) I-VIA“A‘ ¥(7) » lots of

sl s e L) communication
on the right.

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 21/28

LogP Example: FFT (4/6)

x(0) m y(0) *processor 0
x(1) > ¥(8) *processor 1
x2) ® processor 2

IN/AN

igj \\‘VWI ”A‘A‘em i% 7 cotmri)unication

AN ANSS S 3(6) communication

x(7) "““A”m y(14)) Comb|ned

X N AN y() apprpach

A NN e e
xan IlMA\%'"‘Vm y(13) > one big round of
x(12) IIIA\\ “%‘% 3 communication

x(13) X vw yan in the middle

x(14) > ¥(7) » block of rows on
x(15) ARV ¥(s) the right

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 22/28

LogP Example: FFT (5/6)

x(0) * y(0)
x(8) ¥(8)
x(4) y4)
x(3) y(12)
x(2) ¥(2)
x(10) ¥(10)
x(6) ¥(6)
x(14) y(14)
x(I) y(1)
x(9) X ¥9
x(5) ¥(5)
x(13) y(13)
x(3) 3
x(11) <, ><- y(11)
x(7) ¥(7)
X(I5) « , . N ¥(15)
4xFFT4 transpose 4xFFT4

Mark Greenstreet () Models of Parallel Computation

@ Another view of
the combined
approach

» the FFT and
transpose
phases
drawn
separately.

CpSc 448B — Oct. 18, 2011 23/28

LogP Example: FFT (6/6)

@ LogP shows that the combined approach is better.

» So does CTA — one round of messages is clearly better than log P
rounds.
» The technique is well-known — the same approach is important to
get good cache utilization.
@ LogP shows that staggering messages is better than naively
flooding one destination at a time.
» So does CTA with it's assumption of bounded fan-in and fan-out of
the network.
@ Note: The “transpose in the middle” pattern of the FFT occurs in
many other algorithms as well.
» It's important to be able to handle this pattern efficiently.

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 24/28

Comparing the models

@ CTA is simpler than LogP

@ LogP accounts for more machine details
> but these details don’t seem essential for the examples that they give in the
paper.
> It's not clear that the extra details would account for more than a factor of 2
in time estimates,
» and there are lots of other system details that logP ignores that can cause
errors of that magnitude or larger.
» but the marketing is better: “logP” just sounds better than CTA. ©
@ Both are based on a 10-20 year old machine model
» That’s ok, the papers are 18-25 years old.
» Doesn’t account for the heterogeniety of today’s parallel computers:
* multi-core on chip, faster communication between processors on the
same board than across boards, etc.
@ CTA seems like a simple, and reasonable place to start.
» But recognize the limitations of any of these models.

@ Getting a model of parallel computation that’s as all-purpose as the RAM
is still a work-in-progress.

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 25/28

For further reading

@ [Valiant1975] Leslie G. Valiant, “Parallelism in Comparison
Problems,” SIAM Journal of Computing, vol. 4, no. 3, pp. 348—-355,
(Sept. 1975).

@ [Fortune1979] Steven Fortune and James Wyllie, “Parallelism in
Random Access Machines,” Proceeding of the 111" ACM
Symposium on Theory of Computing (STOC’79), pp. 114-118,
May 1978.

@ [Culler1993] David Culler, Richard Karp, et al., “logP: towards a
realistic model of parallel computation,” ACM SIGPLAN Notices,
vol. 28, no. 7, pp. 1-12, (July 1993).

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 26/28

Announcements and reminders

@ Oct. 20: midterm

@ Oct. 25: reduce and scan
Read Lin & Snyder Chapter 5, beginning of chapter through the
end of The Reduce and Scan Abstractions — Generalized Vector
Operations (pp. 112-134).

@ Oct. 27: work allocation
Read the rest of Lin & Snyder Chapter 5, Assigning Work to
Processes Statically through the end of Chapter Summary.

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 27/28

Review

@ Compare and Contrast the main features of the PRAM, CTA, and
LogP models?

@ How does each model represent computation?
@ How does each model represent communication?

@ How does one determine parameter values for the CTA and LogP
models? Describe at a high-level the kinds of experiments you
could run to estimate the parameters.

Mark Greenstreet () Models of Parallel Computation CpSc 448B — Oct. 18, 2011 28/28

