The R10000 Superscalar

Mark Greenstreet

CpSc 448B — Oct. 11, 2011

Outline:
@ DLS Announcement
@ The R10000 Superscalar

Mark Greenstreet () The R10000 Superscalar CpSc 448B — Oct. 11, 2011

1/13

DLS Announcement

@ The October 13 lecture will be Maurice Herhily’s Distinguished
Lecture Series talk:

» Multicore, Transactions, And The Future Of Distributed
Computing

» Dempster, room 110.

» Thursday, October 13, 15:30-17:00.

@ The content of the Herhily’s talk will be included on the midterm.

» | intend to ask an easy question equivalent to “Did you go to the talk
and pay attention.”

» If you go to the talk and pay attention, the answer to the midterm
question will be obvious.

» If for some unavoidable reason you can’t go to the talk, the video for
the talk will be on the CS department web, and I'll add a link from
the course website.

» Note: | find that attending the live lecture is much more effective
than watching a video on my computer.

Mark Greenstreet () The R10000 Superscalar CpSc 448B — Oct. 11, 2011 2/13

The R10000 Superscalar processor

P:e—decode Bk
I$ > IF [—>{DEC|—=|Addr Queue|—=| LD/ST
L branch IALU 1
TALU 1

@ Superscalar, out-of-order execution.
» Fetch and rename
» Ready bits.
» Branches and exceptions.

@ Memory issues

» stores
» loads
» caches

Mark Greenstreet () The R10000 Superscalar CpSc 448B — Oct. 11, 2011

3/13

Fetch

@ Fetch: four instructions per cycle at arbitrary location in 16 word
cache line.

» the extra logic to allow arbitrary alignment means the compiler
doesn’t need to worry to make loops aligned on 4-instruction
boundaries.

» Care still needed when crossing cache line boundaries.

* A good compiler will make sure that a critical loop is aligned to avoid
crossing extra cache-line boundaries.

» See Figure 4 from the paper for details.

Mark Greenstreet () The R10000 Superscalar CpSc 448B — Oct. 11, 2011 4/13

Rename (1/2)

fetched instructions renamed instructions

[oP[$56]$57[$ds] - |

rename
table

[op[$s4]8s5 $d2 -~ |

[op[$s2]$s3[$d1] - |
[op[ss0]ss1]sdo] -] [op[$p0[3p1[$b0)] - |
\

freelist

Mark Greenstreet () The R10000 Superscalar CpSc 448B — Oct. 11, 2011 5/13

Rename (2/2)

@ On the previous slide, | omitted lots of details to simplify the figure.

» many connections the the rename table and freelist wire not shown.

» Likewise, | only showed the comparisons needed for two out of six
source registers than need them.

» | didn’t show the logic for updating the rename table and freelist.

@ If a processor decodes / instructions in a cycle, and each
instruction reads R registers and writes W registers.

» Then we need a total of
(REW)WY, o1 = (R+W)ywitD2

comparators.
» For the R10000, /=4, R=2,and W = 1.
* | get that it needs 18 comparators.
* The papers says 24 were used.
* I'm not sure what the extra 6 are used for.

Mark Greenstreet () The R10000 Superscalar CpSc 448B — Oct. 11, 2011 6/13

Ready Bits

@ When an instruction is inserted into an issue queue:

» The ready/busy status of each register that it reads is recorded.
» These bits are updated as other instructions write their results to
the register file.

*

* % %

The R10000 can write up to three registers per cycle.

Thus, each issue-queue entry requires three comparators.

The R10000 has three, 16-entry issue queues.

Thus, it needs 48 more comparators to track busy-bits.

This is another place where design complexity grows quadratically
with issue width.

@ When an instruction is ready to execute

» eligible instructions are selected in a round-robin fashion.
» some instructions, such as branches are given higher priority.
» the instruction reads its registers when it issues.

*
*
*

The integer register file requires 7 read ports, and three write ports.
Register file area grows quadratically with the number of ports.

Yet another place that design complexity grows quadratically with
issue width.

Mark Greenstreet () The R10000 Superscalar CpSc 448B — Oct. 11, 2011 7/13

Branches

@ When a branch is encountered in the decode stage
» The branch outcome is predicted based on the branch history.
» The instructions fetched in that cycle are discarded if the branch is
predicted as taken.
» The current register mappings are copied into an entry in the
branch stack.
» Subsequent instructions are marked as depending on this branch.
@ When a branch is executed.
» If the prediction was correct

*All instructions that depended on the branch have their
dependence-bit cleared.

* The branch-stack entry for the branch is reclaimed.

» If the prediction was incorrect

* All instructions that depended on the branch are aborted.

* The register mappings are restored to what they were before the
branch.

* Execution resumes on the correct path.

Mark Greenstreet () The R10000 Superscalar CpSc 448B — Oct. 11, 2011 8/13

Exceptions

@ Exceptions are raised when the faulting instruction is ready to
graduate.
» This ensures that exceptions occur in program order.

@ The CPU maintains an “active list” of instructions that have been
issued but not yet graduated.

» When an exception occurs, this list is “unwound” from the last
instruction to issue back to the instruction that raised the exception.

» As the list is unwound, register mappings are restored.

» When the excepting instruction is unwound, the CPU has same
state as it did just before decoding that instruction.

» Now, it's ready to handle the exception.

Mark Greenstreet () The R10000 Superscalar CpSc 448B — Oct. 11, 2011 9/13

Stores

Mark Greenstreet () The R10000 Superscalar

Loads

Mark Greenstreet () The R10000 Superscalar

Caches

Mark Greenstreet () The R10000 Superscalar

Hypercube — how big are they?

Mark Greenstreet () The R10000 Superscalar

