
The R10000 Superscalar

Mark Greenstreet

CpSc 448B – Oct. 11, 2011

Outline:
DLS Announcement
The R10000 Superscalar

Mark Greenstreet () The R10000 Superscalar CpSc 448B – Oct. 11, 2011 1 / 13

DLS Announcement

The October 13 lecture will be Maurice Herhily’s Distinguished
Lecture Series talk:

I Multicore, Transactions, And The Future Of Distributed
Computing

I Dempster, room 110.
I Thursday, October 13, 15:30-17:00.

The content of the Herhily’s talk will be included on the midterm.
I I intend to ask an easy question equivalent to “Did you go to the talk

and pay attention.”
I If you go to the talk and pay attention, the answer to the midterm

question will be obvious.
I If for some unavoidable reason you can’t go to the talk, the video for

the talk will be on the CS department web, and I’ll add a link from
the course website.

I Note: I find that attending the live lecture is much more effective
than watching a video on my computer.

Mark Greenstreet () The R10000 Superscalar CpSc 448B – Oct. 11, 2011 2 / 13

The R10000 Superscalar processor

branch

Addr Queue LD/ST

FP Queue

IALU 1

IALU 1

FP +−

FP *

D$DEC

Int Queue

pre−decode

I$ IF

Superscalar, out-of-order execution.
I Fetch and rename
I Ready bits.
I Branches and exceptions.

Memory issues
I stores
I loads
I caches

Mark Greenstreet () The R10000 Superscalar CpSc 448B – Oct. 11, 2011 3 / 13

Fetch

Fetch: four instructions per cycle at arbitrary location in 16 word
cache line.

I the extra logic to allow arbitrary alignment means the compiler
doesn’t need to worry to make loops aligned on 4-instruction
boundaries.

I Care still needed when crossing cache line boundaries.
F A good compiler will make sure that a critical loop is aligned to avoid

crossing extra cache-line boundaries.
I See Figure 4 from the paper for details.

Mark Greenstreet () The R10000 Superscalar CpSc 448B – Oct. 11, 2011 4 / 13

Rename (1/2)

renamed instructions

op $s0 $s1 $d0 ... op $p0 $p1 $b0 ...

op $s2 $s3 $d1 ...

op $s4 $s5 $d2 ...

op $p2 $p3 $b1 ...

op $s4 $s5 $d2 ...

=

=

op $s6 $s7 $d8 ...op $s6 $s7 $d8 ...

freelist

==

rename
table

fetched instructions

Mark Greenstreet () The R10000 Superscalar CpSc 448B – Oct. 11, 2011 5 / 13

Rename (2/2)

On the previous slide, I omitted lots of details to simplify the figure.

I many connections the the rename table and freelist wire not shown.
I Likewise, I only showed the comparisons needed for two out of six

source registers than need them.
I I didn’t show the logic for updating the rename table and freelist.

If a processor decodes I instructions in a cycle, and each
instruction reads R registers and writes W registers.

I Then we need a total of

(R + W)W
∑

J=0 I − 1J = (R + W)W I(I−1)
/ 2

comparators.
I For the R10000, I = 4, R = 2, and W = 1.

F I get that it needs 18 comparators.
F The papers says 24 were used.
F I’m not sure what the extra 6 are used for.

Mark Greenstreet () The R10000 Superscalar CpSc 448B – Oct. 11, 2011 6 / 13

Ready Bits

When an instruction is inserted into an issue queue:
I The ready/busy status of each register that it reads is recorded.
I These bits are updated as other instructions write their results to

the register file.
F The R10000 can write up to three registers per cycle.
F Thus, each issue-queue entry requires three comparators.
F The R10000 has three, 16-entry issue queues.
F Thus, it needs 48 more comparators to track busy-bits.
F This is another place where design complexity grows quadratically

with issue width.

When an instruction is ready to execute
I eligible instructions are selected in a round-robin fashion.
I some instructions, such as branches are given higher priority.
I the instruction reads its registers when it issues.

F The integer register file requires 7 read ports, and three write ports.
F Register file area grows quadratically with the number of ports.
F Yet another place that design complexity grows quadratically with

issue width.

Mark Greenstreet () The R10000 Superscalar CpSc 448B – Oct. 11, 2011 7 / 13

Branches

When a branch is encountered in the decode stage
I The branch outcome is predicted based on the branch history.
I The instructions fetched in that cycle are discarded if the branch is

predicted as taken.
I The current register mappings are copied into an entry in the

branch stack.
I Subsequent instructions are marked as depending on this branch.

When a branch is executed.
I If the prediction was correct

F All instructions that depended on the branch have their
dependence-bit cleared.

F The branch-stack entry for the branch is reclaimed.
I If the prediction was incorrect

F All instructions that depended on the branch are aborted.
F The register mappings are restored to what they were before the

branch.
F Execution resumes on the correct path.

Mark Greenstreet () The R10000 Superscalar CpSc 448B – Oct. 11, 2011 8 / 13

Exceptions

Exceptions are raised when the faulting instruction is ready to
graduate.

I This ensures that exceptions occur in program order.
The CPU maintains an “active list” of instructions that have been
issued but not yet graduated.

I When an exception occurs, this list is “unwound” from the last
instruction to issue back to the instruction that raised the exception.

I As the list is unwound, register mappings are restored.
I When the excepting instruction is unwound, the CPU has same

state as it did just before decoding that instruction.
I Now, it’s ready to handle the exception.

Mark Greenstreet () The R10000 Superscalar CpSc 448B – Oct. 11, 2011 9 / 13

Stores

Mark Greenstreet () The R10000 Superscalar CpSc 448B – Oct. 11, 2011 10 / 13

Loads

Mark Greenstreet () The R10000 Superscalar CpSc 448B – Oct. 11, 2011 11 / 13

Caches

Mark Greenstreet () The R10000 Superscalar CpSc 448B – Oct. 11, 2011 12 / 13

Hypercube – how big are they?

Mark Greenstreet () The R10000 Superscalar CpSc 448B – Oct. 11, 2011 13 / 13

