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DLS Announcement

@ The October 13 lecture will be Maurice Herhily’s Distinguished
Lecture Series talk:

» Multicore, Transactions, And The Future Of Distributed
Computing

» Dempster, room 110.

» Thursday, October 13, 15:30-17:00.

@ The content of the Herhily’s talk will be included on the midterm.

» | intend to ask an easy question equivalent to “Did you go to the talk
and pay attention.”

» If you go to the talk and pay attention, the answer to the midterm
question will be obvious.

» If for some unavoidable reason you can’t go to the talk, the video for
the talk will be on the CS department web, and I'll add a link from
the course website.

» Note: | find that attending the live lecture is much more effective
than watching a video on my computer.
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The R10000 Superscalar processor
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@ Superscalar, out-of-order execution.
» Fetch and rename
» Ready bits.
» Branches and exceptions.

@ Memory issues

» stores
» loads
» caches
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Fetch

@ Fetch: four instructions per cycle at arbitrary location in 16 word
cache line.

» the extra logic to allow arbitrary alignment means the compiler
doesn’t need to worry to make loops aligned on 4-instruction
boundaries.

» Care still needed when crossing cache line boundaries.

* A good compiler will make sure that a critical loop is aligned to avoid
crossing extra cache-line boundaries.

» See Figure 4 from the paper for details.
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Rename (1/2)

fetched instructions renamed instructions

[ oP[$56]$57[$ds] - |

rename
table

[op[$s4]8s5 $d2 -~ |

[op[$s2]$s3[$d1] - |
[op[ss0]ss1]sdo] -] [op[$p0[3p1[$b0)] - |
\

freelist
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Rename (2/2)

@ On the previous slide, | omitted lots of details to simplify the figure.

» many connections the the rename table and freelist wire not shown.

» Likewise, | only showed the comparisons needed for two out of six
source registers than need them.

» | didn’t show the logic for updating the rename table and freelist.

@ If a processor decodes / instructions in a cycle, and each
instruction reads R registers and writes W registers.

» Then we need a total of
(REW)WY, o1 = (R+W)ywitD2

comparators.
» For the R10000, /=4, R=2,and W = 1.
* | get that it needs 18 comparators.
* The papers says 24 were used.
* I'm not sure what the extra 6 are used for.
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Ready Bits

@ When an instruction is inserted into an issue queue:

» The ready/busy status of each register that it reads is recorded.
» These bits are updated as other instructions write their results to
the register file.

*

* % %

The R10000 can write up to three registers per cycle.

Thus, each issue-queue entry requires three comparators.

The R10000 has three, 16-entry issue queues.

Thus, it needs 48 more comparators to track busy-bits.

This is another place where design complexity grows quadratically
with issue width.

@ When an instruction is ready to execute

» eligible instructions are selected in a round-robin fashion.
» some instructions, such as branches are given higher priority.
» the instruction reads its registers when it issues.

*
*
*

The integer register file requires 7 read ports, and three write ports.
Register file area grows quadratically with the number of ports.

Yet another place that design complexity grows quadratically with
issue width.
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Branches

@ When a branch is encountered in the decode stage
» The branch outcome is predicted based on the branch history.
» The instructions fetched in that cycle are discarded if the branch is
predicted as taken.
» The current register mappings are copied into an entry in the
branch stack.
» Subsequent instructions are marked as depending on this branch.
@ When a branch is executed.
» If the prediction was correct

*All instructions that depended on the branch have their
dependence-bit cleared.

* The branch-stack entry for the branch is reclaimed.

» If the prediction was incorrect

* All instructions that depended on the branch are aborted.

* The register mappings are restored to what they were before the
branch.

* Execution resumes on the correct path.
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Exceptions

@ Exceptions are raised when the faulting instruction is ready to
graduate.
» This ensures that exceptions occur in program order.

@ The CPU maintains an “active list” of instructions that have been
issued but not yet graduated.

» When an exception occurs, this list is “unwound” from the last
instruction to issue back to the instruction that raised the exception.

» As the list is unwound, register mappings are restored.

» When the excepting instruction is unwound, the CPU has same
state as it did just before decoding that instruction.

» Now, it's ready to handle the exception.
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Stores
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Loads
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Caches
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Hypercube — how big are they?

Mark Greenstreet () The R10000 Superscalar



