Shared Memory Multiprocessors

Mark Greenstreet

CpSc 448B — Oct. 4, 2011

Ouitline:
@ Shared-Memory Architectures
@ Memory Consistency
@ Examples

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B — Oct. 4, 2011

1/18

An Ancient Shared-Memory Machine

CPUO

.—

CPU1

B

M

@ Multiple CPU’s (typically two) shared a memory

@ If both attempted a memory read or write at the same time

» One is chosen to go first.
» Then the other does it’s operation.

» That’s the role of the switch in the figure.
@ By using multiple memory units (partitioned by address), and a
switching network, the memory could keep up with the processors.
@ But, now that processors are 100’s of times faster than caches,

this isn’t practical.

Mark Greenstreet ()

Shared Memory Multiprocessors

CpSc 448B — Oct. 4, 2011

A Shared-Memory Machine with Caches

CPUO

CPU 1

A
Y

A

A

A

/

cache O

cache 1

A
\J

A
A

A
/

CPU
n—1

@ Caches reduce the number of main memory reads and writes.

@ But, what happens when a procesor does a write?

Mark Greenstreet ()

Shared Memory Multiprocessors

CpSc 448B — Oct. 4, 2011

3/18

The MESI protocol

remote write®, € I = invalid
update memory S = shared
(carefully) E = exclusive
M = modified

write* = write~through
(to memory

write = write—back
(local—cache only)

€ = "spontaneous”

remote
transition

write®, €

@ Caches can share read-only copies of a cache block.
@ When a processor writes a cache block, the first write goes to

main memory.
» The other caches see the write and invalidate their copies.
» This ensures that writeable block are exclusive.

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B — Oct. 4, 2011

4/18

A typical cache

tag
47:12

4TD—> hit

> data

cache
index
11:4

addr[0:47]

2

position
within
cache—block
(ignored)

tag data

tag

data

tag

data

tag

data

@ Only the read-path is shown. Writing is similar.

@ This is a 16K-byte, 4-way set-associative cache, with 16 byte

cache blocks.

Mark Greenstreet ()

Shared Memory Multiprocessors

CpSc 448B — Oct. 4, 2011 5/18

Snooping caches

@ Each cache has two copies of the tags.

» One copy is used for operations by the local processor.
» The other copy is used to monitor operations on the main memory
bus.

* if another processor attempts to read a block which we have in teh
exclusive or modified state, we provide the data (and update
main memory).

* if another processor attempts to write a block that we have, we
invalidate our block (updating main memory first if our copy was in the
modified state.

@ Pros and cons:

» Fairly easy to implement.
» Doesn'’t scale to large numbers of processors.

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B — Oct. 4, 2011 6/18

Directory schemes

@ Main memory keeps a copy of the data and

» a bit-vector that records which processors have copies, and

» a bit to indicate that one processor has a copy and it may be
modified.

@ A processor accesses main memory as required by the MESI
protocol.

» The memory unit sends messages to the other CPUs to direct them
to take actions as needed by the protocol.

» The ordering of these messages ensures that memory stays
consistent.

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B — Oct. 4, 2011 7/18

Mark Greenstreet ()

Shared-Memory Machines in practice

Shared Memory Multiprocessors

Mark Greenstreet ()

Sequential Consistency

Shared Memory Multiprocessors

Mark Greenstreet ()

MESI Guarantees Sequential Consistency

Shared Memory Multiprocessors

Dekker’s Algorithm

Problem statement: ensure that at most one thread is in its critical

section at any given time.

thread 0:
flag[0] = true;
while (flag[1]) {
if (turn != 0) {
flag[0] =

while (turn

flag[0] =
}
}

critical section

turn = 1;
flag[0] = false;

Mark Greenstreet ()

Shared Memory Multiprocessors

thread 1:

flag[l] = true;
while (flag[0]) {

if(turn !'= 1) {
flag[l] = false;
while (turn != 1);
flag[l] = true;
}
}
critical section
turn = 0;
flag[l] = false;

CpSc 448B — Oct. 4, 2011

11/18

Dekker’s with C-threads

typedef struct { % thread parameters
int id, ntrials;
} dekker_args;

[o)

% shared variables
int flag[] = {0,0};
int count[] = {0,0};
int turn = 0;

int dekker_thread(void xvoid.arg) {

for(int i = 0; i < ntrials; i++) {
do some work;
acquire the lock;
critical section (includes test for inteference);
release lock;

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B — Oct. 4, 2011 12/18

Work, then lock

% do a random amount of “work” before critical region

— Q

r = 23xr & 0x3f; % simple pseudo-random, range = {0 ...63}

for(int j = 0; j < r; J++); % thisis “work”?

% acquire the lock

flag[me] = TRUE; % indicate intention to enter critical region

while (flag[!mel) {

if (turn != me) {

flag[me] = FALSE; % give the other thread a chance
while (turn != me); % spin waiting for turn
flag[me] = TRUE; % try again

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B — Oct. 4, 2011 13/18

Critical section, then unlock

Q

% critical section
for(int j = 0; 3 < 10; j++) {
count [me] = j;
% check_zero reports error and dies if count ['me] != 0
check_zero (count, !me, 1i);
}
count [me] = 0;

[)

% release the lock
turn = !me;
flag[me] = 0;

u]
]
I
ul
it

Mark Greenstreet () Shared Memory Multiprocessors

Let's try it

gcc —-std=c99 dekkerO.c cz.o -o dO

chzgk,zero failed for trial 8: a[0] =1
zhggk,zero failed for trial 986: a[l]
zhggk,zero failed for trial 898: af[l] = 4
Zh:gk,zero failed for trial 10: a[0] = 1

°
)

o o

Il
N

@ What happened?
@ Why?

u]
]
I
ul
it

12N Ge

Mark Greenstreet () Shared Memory Multiprocessors

Weaker Consistency

The problem of write-buffers.

Mark Greenstreet ()

Shared Memory Multiprocessors

Fixing the bug

% acquire the lock

flag[me] = TRUE; % indicate intention to enter critical region
__asm__("mfence");
while (flag[!me]) {
if (turn !'= me) {
flag[me] = FALSE; give the other thread a chance

while (turn != me);
flag[me] = TRUE;
__asm__("mfence") ;

}

spin waiting for turn
try again

o° o o°

@ Try again:
s dl
ok

Mark Greenstreet () Shared Memory Multiprocessors

What's mfence?

@ A memory fence.
@ Simple version:

» All loads and stores issued by the processor that executes the
mfence must complete globally before execution continues beyond
the mfence.

@ mfence instructions are expensive
@ And in-line assembly code is painful

» Not portable.
» Hard to read.
» Who wants to program in assembly?

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B — Oct. 4, 2011 18/18

