
Shared Memory Multiprocessors

Mark Greenstreet

CpSc 448B – Oct. 4, 2011

Outline:
Shared-Memory Architectures
Memory Consistency
Examples

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 1 / 18



An Ancient Shared-Memory Machine

MEM

CPU0 CPU1

Multiple CPU’s (typically two) shared a memory
If both attempted a memory read or write at the same time

I One is chosen to go first.
I Then the other does it’s operation.
I That’s the role of the switch in the figure.

By using multiple memory units (partitioned by address), and a
switching network, the memory could keep up with the processors.
But, now that processors are 100’s of times faster than caches,
this isn’t practical.
Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 2 / 18



A Shared-Memory Machine with Caches

CPU

MEM

cache 0

CPU 0

cache 1

CPU 1 ...

...

n−1

cache

n−1

Caches reduce the number of main memory reads and writes.
But, what happens when a procesor does a write?
Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 3 / 18



The MESI protocol

write*,

E

I

S

M

remote

write*
local

local read

remote
ε

write*,

local
write

remote
read

remote read
update

memory

ε

εremote write*,
update memory

I
= shared
= invalid

S
E = exclusive

= modifiedM

write*
(to memory)

= write−through

write
(local−cache only)

= write−back

ε = "spontaneous"
transition

(carefully)

Caches can share read-only copies of a cache block.
When a processor writes a cache block, the first write goes to
main memory.

I The other caches see the write and invalidate their copies.
I This ensures that writeable block are exclusive.

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 4 / 18



A typical cache

= =
47:12

tag

data

hit

= =

cache−block

tag data

(ignored)

tag data

3:0

tag data

cache
index

tag dataaddr[0:47]

position
within

11:4

Only the read-path is shown. Writing is similar.
This is a 16K-byte, 4-way set-associative cache, with 16 byte
cache blocks.

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 5 / 18



Snooping caches

Each cache has two copies of the tags.
I One copy is used for operations by the local processor.
I The other copy is used to monitor operations on the main memory

bus.
F if another processor attempts to read a block which we have in teh

exclusive or modified state, we provide the data (and update
main memory).

F if another processor attempts to write a block that we have, we
invalidate our block (updating main memory first if our copy was in the
modified state.

Pros and cons:
I Fairly easy to implement.
I Doesn’t scale to large numbers of processors.

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 6 / 18



Directory schemes

Main memory keeps a copy of the data and
I a bit-vector that records which processors have copies, and
I a bit to indicate that one processor has a copy and it may be

modified.
A processor accesses main memory as required by the MESI
protocol.

I The memory unit sends messages to the other CPUs to direct them
to take actions as needed by the protocol.

I The ordering of these messages ensures that memory stays
consistent.

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 7 / 18



Shared-Memory Machines in practice

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 8 / 18



Sequential Consistency

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 9 / 18



MESI Guarantees Sequential Consistency

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 10 / 18



Dekker’s Algorithm

Problem statement: ensure that at most one thread is in its critical
section at any given time.

thread 0: thread 1:

x

flag[0] = true;
while(flag[1]) {

if(turn != 0) {
flag[0] = false;
while(turn != 0);
flag[0] = true;

}
}
critical section
turn = 1;
flag[0] = false;

flag[1] = true;
while(flag[0]) {

if(turn != 1) {
flag[1] = false;
while(turn != 1);
flag[1] = true;

}
}
critical section
turn = 0;
flag[1] = false;

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 11 / 18



Dekker’s with C-threads

typedef struct { % thread parameters
int id, ntrials;

} dekker args;

% shared variables
int flag[] = {0,0};
int count[] = {0,0};
int turn = 0;

int dekker thread(void *void arg) {
...
for(int i = 0; i < ntrials; i++) {

do some work;
acquire the lock;
critical section (includes test for inteference);
release lock;

}
}

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 12 / 18



Work, then lock

% do a random amount of “work” before critical region
r = 23*r & 0x3f; % simple pseudo-random, range = {0 . . . 63}
for(int j = 0; j < r; j++); % this is “work”?

% acquire the lock
flag[me] = TRUE; % indicate intention to enter critical region
while(flag[!me]) {

if(turn != me) {
flag[me] = FALSE; % give the other thread a chance
while(turn != me); % spin waiting for turn
flag[me] = TRUE; % try again

}
}

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 13 / 18



Critical section, then unlock

% critical section
for(int j = 0; j < 10; j++) {

count[me] = j;
% check zero reports error and dies if count[!me] != 0
check zero(count, !me, i);

}
count[me] = 0;

% release the lock
turn = !me;
flag[me] = 0;

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 14 / 18



Let’s try it

% gcc -std=c99 dekker0.c cz.o -o d0
% d0
check zero failed for trial 8: a[0] = 1
% d0
check zero failed for trial 986: a[1] = 4
% d0
check zero failed for trial 898: a[1] = 4
% d0
check zero failed for trial 10: a[0] = 1
% ...

What happened?
Why?

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 15 / 18



Weaker Consistency

The problem of write-buffers.

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 16 / 18



Fixing the bug
% acquire the lock
flag[me] = TRUE; % indicate intention to enter critical region
asm ("mfence");

while(flag[!me]) {
if(turn != me) {

flag[me] = FALSE; % give the other thread a chance
while(turn != me); % spin waiting for turn
flag[me] = TRUE; % try again

asm ("mfence");
}

}

Try again:
% d1
ok
% d1
ok
% d1
ok
% ...

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 17 / 18



What’s mfence?

A memory fence.
Simple version:

I All loads and stores issued by the processor that executes the
mfence must complete globally before execution continues beyond
the mfence.

mfence instructions are expensive
And in-line assembly code is painful

I Not portable.
I Hard to read.
I Who wants to program in assembly?

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 18 / 18


