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An Ancient Shared-Memory Machine
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Multiple CPU’s (typically two) shared a memory
If both attempted a memory read or write at the same time

I One is chosen to go first.
I Then the other does it’s operation.
I That’s the role of the switch in the figure.

By using multiple memory units (partitioned by address), and a
switching network, the memory could keep up with the processors.
But, now that processors are 100’s of times faster than caches,
this isn’t practical.
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A Shared-Memory Machine with Caches
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Caches reduce the number of main memory reads and writes.
But, what happens when a procesor does a write?
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The MESI protocol

write*,

E

I

S

M

remote

write*
local

local read

remote
ε

write*,

local
write

remote
read

remote read
update

memory

ε

εremote write*,
update memory

I
= shared
= invalid

S
E = exclusive

= modifiedM

write*
(to memory)

= write−through

write
(local−cache only)

= write−back

ε = "spontaneous"
transition

(carefully)

Caches can share read-only copies of a cache block.
When a processor writes a cache block, the first write goes to
main memory.

I The other caches see the write and invalidate their copies.
I This ensures that writeable block are exclusive.
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A typical cache
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Only the read-path is shown. Writing is similar.
This is a 16K-byte, 4-way set-associative cache, with 16 byte
cache blocks.

Mark Greenstreet () Shared Memory Multiprocessors CpSc 448B – Oct. 4, 2011 5 / 18



Snooping caches

Each cache has two copies of the tags.
I One copy is used for operations by the local processor.
I The other copy is used to monitor operations on the main memory

bus.
F if another processor attempts to read a block which we have in teh

exclusive or modified state, we provide the data (and update
main memory).

F if another processor attempts to write a block that we have, we
invalidate our block (updating main memory first if our copy was in the
modified state.

Pros and cons:
I Fairly easy to implement.
I Doesn’t scale to large numbers of processors.
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Directory schemes

Main memory keeps a copy of the data and
I a bit-vector that records which processors have copies, and
I a bit to indicate that one processor has a copy and it may be

modified.
A processor accesses main memory as required by the MESI
protocol.

I The memory unit sends messages to the other CPUs to direct them
to take actions as needed by the protocol.

I The ordering of these messages ensures that memory stays
consistent.
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Shared-Memory Machines in practice
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Sequential Consistency
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MESI Guarantees Sequential Consistency
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Dekker’s Algorithm

Problem statement: ensure that at most one thread is in its critical
section at any given time.

thread 0: thread 1:

x

flag[0] = true;
while(flag[1]) {

if(turn != 0) {
flag[0] = false;
while(turn != 0);
flag[0] = true;

}
}
critical section
turn = 1;
flag[0] = false;

flag[1] = true;
while(flag[0]) {

if(turn != 1) {
flag[1] = false;
while(turn != 1);
flag[1] = true;

}
}
critical section
turn = 0;
flag[1] = false;
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Dekker’s with C-threads

typedef struct { % thread parameters
int id, ntrials;

} dekker args;

% shared variables
int flag[] = {0,0};
int count[] = {0,0};
int turn = 0;

int dekker thread(void *void arg) {
...
for(int i = 0; i < ntrials; i++) {

do some work;
acquire the lock;
critical section (includes test for inteference);
release lock;

}
}
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Work, then lock

% do a random amount of “work” before critical region
r = 23*r & 0x3f; % simple pseudo-random, range = {0 . . . 63}
for(int j = 0; j < r; j++); % this is “work”?

% acquire the lock
flag[me] = TRUE; % indicate intention to enter critical region
while(flag[!me]) {

if(turn != me) {
flag[me] = FALSE; % give the other thread a chance
while(turn != me); % spin waiting for turn
flag[me] = TRUE; % try again

}
}
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Critical section, then unlock

% critical section
for(int j = 0; j < 10; j++) {

count[me] = j;
% check zero reports error and dies if count[!me] != 0
check zero(count, !me, i);

}
count[me] = 0;

% release the lock
turn = !me;
flag[me] = 0;
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Let’s try it

% gcc -std=c99 dekker0.c cz.o -o d0
% d0
check zero failed for trial 8: a[0] = 1
% d0
check zero failed for trial 986: a[1] = 4
% d0
check zero failed for trial 898: a[1] = 4
% d0
check zero failed for trial 10: a[0] = 1
% ...

What happened?
Why?
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Weaker Consistency

The problem of write-buffers.
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Fixing the bug
% acquire the lock
flag[me] = TRUE; % indicate intention to enter critical region
asm ("mfence");

while(flag[!me]) {
if(turn != me) {

flag[me] = FALSE; % give the other thread a chance
while(turn != me); % spin waiting for turn
flag[me] = TRUE; % try again

asm ("mfence");
}

}

Try again:
% d1
ok
% d1
ok
% d1
ok
% ...
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What’s mfence?

A memory fence.
Simple version:

I All loads and stores issued by the processor that executes the
mfence must complete globally before execution continues beyond
the mfence.

mfence instructions are expensive
And in-line assembly code is painful

I Not portable.
I Hard to read.
I Who wants to program in assembly?
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