
Superscalar Architectures

Mark Greenstreet

CpSc 448B – Sept. 29, 2011

Outline:
Computer Architecture Overview

I Computers from before when the instructor was born (i.e. really
old).

I Microcoded machines (like you saw in CpSc 121).
I Pipelined machines (like you saw in CpSc 313).

Superscalar architectures
Matrix multiplication on a superscalar machine.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 1 / 31



In the beginning. . .

“Computer” was the name for a profession.
I problems that required large numbers of calculations were solved

by rooms full of people.

Then, we got mechanical calculators.
The first electronic computers were not programmable.

I The various functional units were connected together with “patch
cords” like an old-fashioned telephone exchange.

I The compute would be configured for a particular problem.
I It would run to solve the problem,
I And then it would be reconfigured for the next problem.

The use of memory for program and data started was proposed
after WW II.
Each machine had it’s own machine language to match its
functional units.

I Software had to be rewritten for each different machine.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 2 / 31



Microcoded machines

PC

P
C

µ

µ

ROM
code

REG[0:7] ALU

MEM

addr

data

IR
E

G

Signals

Control

bus−A

bus−B

A simple, microcoded machine

The microcode (µcode) ROM specifies the sequence of
operations necessary to carry out an instruction.
For simplicity, I’m assuming that the op-code bits of the instruction
form the most significant bits of the µcode ROM address, and that
the value of the micro-PC (µPC) form the lower half of the
address.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 3 / 31



Microcode: example

PC

P
C

µ

µ

ROM
code

REG[0:7] ALU

MEM

addr

data

IR
E

G

Signals

Control

bus−A

bus−B

Example: add reg[2], reg[3]

µPC = 0: bus-A ← reg[2],
bus-B ← reg[3],
ALU-op ← add;

µPC = 1: bus-A ← ALU,
reg[2] ← bus-A
PC-op ← increment

µPC = 2: bus-B ← PC,
mem-op ← read
IREG ← bus-A
µPC-op ← reset

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 4 / 31



Microcode: summary

Separates hardware from instruction set.
I Different hardware can run the same software.
I Enabled IBM to sell machines with a wide range of performance

that were all compatible
F I.e. IBM built an empire and made a fortune on the IBM 360 and its

successors.
F Intel has done the same with the x86.

But, as implemented on slide 3, it’s very sequential.
while(true) {

fetch an instruction;
perform the instruction

}
Instruction fetch is “overhead”

I Motivates coming up with complicated instructions that perform lots
of operations per instruction fetch.

I But these are hard for compilers to use.
I Can we do better?

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 5 / 31



Pipelined instruction execution

A Piplelined (RISC) CPU

Registers

Data

ALU Write−

back

inst.

fetch

inst

ctrl ctrl ctrl ctrl

datadata

op1

op2

data data data

addr addr

addr

rs2rs1

rd

Address

jr

decode MEM

D$I$

MEM

Successive instructions in each stage
When instruction i in ifetch, instruction i-1 in decode, . . .
Allows throughput of one instruction per cycle.
Favors simple instructions that execute on a single pass through
the pipeline.
Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 6 / 31



Pipeline Hazards (1/2)

MEM

..
.

..
.

..
.

Registers

ALU Write−

back

inst.

fetch

inst

ctrl ctrl ctrl ctrl

op1

op2

data data data

addr

rs2rs1

rd

jr

decode
..
.

A hazard occurs if pipelined instruction execution produces a
different result than sequential execution.
Data hazard: instruction i reads register (in decode stage) that
instruction i-1 will write later (in Write-back)

I Standard solution: bypasses.
I Decode broadcasts registers to be fetched to all pipestages:

F If a stage has an instruction that will write that register.
F It provides the value or forces a stall.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 7 / 31



Pipeline Hazards (2/2)

MEM
..
.

..
.

..
.

Registers

ALU Write−

back

inst.

fetch

inst

ctrl ctrl ctrl ctrl

op1

op2

data data data

addr

rs2rs1

rd

jr

decode

..
.

Control Hazard: branch not resolved before next instruction
fetched.

I Standard solutions:
F Resolve branches early (in decode stage).
F Expose one-cycle “delay-slot” to compiler/assembler.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 8 / 31



Exceptions

An exception causes the CPU to switch to executing a different
sequence of instructions:

system calls: trap into the operating system, switch from user to
supervisor execution mode.
page faults: the virtual address for a load or store doesn’t have a
corresponding physical memory location. Trap into the OS to bring
the appropriate page in from disk and update the page tables.
other exceptions caused by software: illegal addresses, overflow,
illegal instruction. . . .
interrupts = exceptions caused by the hardware

I I/O device interrupts (e.g. data ready from disk)
I timer interrupts (e.g. the timer for the process scheduler)
I hardware failures (e.g. uncorrectable memory read error)
I some notebook computers have an accelerometer interrupt:

“This laptop is falling, retract the disk heads before impact.”

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 9 / 31



Precise Exceptions

To restart a process after handling an exception, the OS needs to
be able to reconstruct the process state. This also helps to identify
the cause of the exception.
An exception is precise if:

I The exception is associated with a particular instruction.
I All instructions (in program order) prior to the faulting instruction

complete execution.
I The faulting instruction and all subsequent ones appear to have

never started.

Programmers love precise exceptions, especially systems
programmers ,.
Precise exceptions are fairly straightforward to implement on an
“old-fashioned” CPU:

I Some complex instructions can cause challenges.
I E.g. how do you handle a page-fault in the middle of a huge

memory-block-copy instruction?

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 10 / 31



Precise Exceptions on a RISC

How to do it:
I Let the faulting instruction continue to the write-back stage.
I When it reaches write-back, cancel all instructions in previous

stages.
F This means making sure that the following instruction doesn’t do a

write in the MEM stage.
I Handle the exception.
I The process can resume by restarting at the faulting instruction.

Exceptions and hazards:
I Data hazards: must be handled by bypasses and stalls.

Can’t have the result from instruction i visible to instruction i+1
only if instruction i faults.

I Control hazards: record delay-slot info as part as part of the
per-process data in the OS kernel.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 11 / 31



Outline

Computer Architecture Overview
Superscalar architectures

I Multiple-instruction issue
I Register renaming
I Branches, exceptions, memory accesses

Matrix multiplication on a superscalar machine.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 12 / 31



Superscalar Processors

MEM

reg.
map

status

Issue Queues

IALU1

FP2

IALU2

LS1

LS2

FP1

A Superscalar CPU

inst.

fetch

I$

decode

rename
&

Registers
Integer

Registers
Float.−Point

D$

reorder

buffer

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 13 / 31



Superscalar Execution

Fetch several, W , instructions each cycle.
Decode them in parallel, and send them to issue queues for the
appropriate functional unit.
But what about hazards?

I We need to make sure that data and dependencies are properly
observed.

I Code should execute on a superscalar as if it were executing on
sequential, on-instruction-at-a-time machine.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 14 / 31



Register Renaming
Like everything else in computer science, superscalars just add
another level of indirection to solve the problem of data dependencies.

Logical and Physical Registers
I Machine-code (assembly) instructions refer to logical registers.
I The machine stores values in physical registers.
I The machine maintains a mapping between the logical and physical

registers.
Renaming:

I When an instruction is decoded,
F logical registers that it reads are mapped to physical register

according to the current register map.
F for each register that the instruction writes:

• a physical register is allocated from a free list.
• the register map is updated to make this new
physical register for the logical register written by the
instruction.

I I’ll explain how registers get back to the freelist shortly.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 15 / 31



Renaming Example (1/2)

Consider executing:

add $5, $2, $3 % reg[5]→ reg[2] + reg[3]
st 24($8), $5 % MEM[24+$8]→ reg[4]
...or$5, $7, #0x7f % the next instruction to write reg[5]

With
Physical registers P47 and P23 the next two entries on the freelist.
The current register map includes:

Logical → Physical
2 14
3 61
4 21
5 38
...

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 16 / 31



Renaming Example (2/2)
When add $5, $2, $3 goes through decode and rename

I it becomes add P47, P14, P61.
I register P47 is removed from the free list and marked as busy.
I the “renamed” instruction is added to the issue-queue of an ALU.

If register P14 or P61 are marked as busy,
I that indicates that the instruction that will set the value for that

register hasn’t executed yet.
I the add instruction will have to wait.

When both registers P14 or P61 are marked as ready (or
graduated), then the add instruction can execute.
When add P47, P14, P61 executes, register P47 is marked as
ready.
When all instructions that came before add P47, P14, P61 in
program order have graduated, then register P47 graduates as
well.
When the instruction or $5, $7, #0x7f graduates, then
register P47 returns to the freelist.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 17 / 31



The Lifecyle of a Register (1/2)

graduates

Busy

Free

Ready

Graduated

in rename
Register allocated

Functional unit
computes result.

Previous instruction
(by program order)

graduates.

next writer of this register
(by program order)

Renaming constructs a graph that reflects the data dependencies
of the program.
It removes “false” hazards such as

I Write-after-write:
F Two instructions that write the same logical register can execute in

either order.
F The last one in program order will be the last one to graduate.

I Write-after-read:
F An instruction that writes a logical register can execute before an

earlier instruction that reads the same logical register.
F That’s because the two occurrences of the logical register map to

different physical registers.
Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 18 / 31



The Lifecyle of a Register (1/2)

graduates

Busy

Free

Ready

Graduated

in rename
Register allocated

Functional unit
computes result.

Previous instruction
(by program order)

graduates.

next writer of this register
(by program order)

Renaming removes “false” hazards such as
I Write-after-write.
I Write-after-read.

The set of graduated registers corresponds to the state of a
sequential execution of the program after executing the last
graduated instruction.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 19 / 31



Branch Prediction

A branch may not be resolved until several cycles after it is
fetched.
Many instructions will have been fetched, decoded, queued and
perhaps executed (but not graduated) in the meantime.

I How does the processor determine which instructions to fetch?
Speculate

I Keep track of recent history of branches – typically with “saturating
counters’.

I If the counter predicts branch taken, the fetch unit sees this and
fetches from the branch target.

I If the counter predicts branch not-taken, the fetch unit continues
fetching in sequence.

I If a branch is mispredicted
F Then the wrong path instructions are aborted.
F The processor resumes execution down the correct path.
F Branch mispredict penalties can be large.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 20 / 31



Does Branch Prediction Work?
Good:

For-loops with many executions: predict branch taken.
If statements of the form

if(condition) {
take care of the common case;

} else {
handle unusual situation;

}
– predict branch not taken (i.e. then clause will be executed).

Bad:
Data dependent branches:

while((x < xtop) && (y < ytp)) { % merge-loop
if(*x < *y) *(z++) = *(x++);
else *(z++) = *(y++);

}
If the data to be sorted is random

I Any branch predictor will be wrong 50% of the time.
I Even the mispredicted path can help reduce cache-misses.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 21 / 31



Exceptions on a Superscalar

Instructions commit in program order⇒
I Take the exception when the instruction would graduate.

This ensures that all previous instructions have graduated.
Abort all subsequent instructions.

I This ensures that the current instruction and all subsequent ones
appear to have never started.

I Register restored by unwinding the register mappings to the point
they were just before decoding and mapping the faulting instruction.

I Memory has the correct values because stores are delayed until
the store instruction graduates.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 22 / 31



Example: matrix multiply

for(int i = 0; i < n rows a; i++) {
for(int j = 0; j < n cols b; j++) {

sum = 0.0; for(int k = 0; k < n cols a; k++) {
% n cols a = n rows b
sum += a[i,k] * b[k,j];

}
c[i,j] = sum;

}
}

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 23 / 31



Inner-Loop: Dependencies

...

 1: ld *aptr

 2: aptr += 8

 3: ld *bptr

 4: bptr += bstride

 5: (double) *

 6: (double) +

 7: branch

  8: ld *aptr

  9: aptr += 8

 10: ld *bptr

 11: bptr += bstride

 12: (double) *

 13: (double) +

 14: branch

 15: ld *aptr

 16: aptr += 8

 17: ld *bptr

 18: bptr += bstride

 19: (double) *

 20: (double) +

 21: branch

...

...

Number to the left of instructions indicate the program order of
instruction execution.
Magenta arcs indicate data dependencies within a single iteration
of the loop body.
Green arcs indicate data dependencies between loop iterations.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 24 / 31



Inner-Loop: Execution
The pointer increments only depend on the previous loop:

I These can “run ahead” of the rest of the instructions, computing
addresses well in advance.

I With renaming, there will one physical registers per active loop
iteration for the aptr logical register, and likewise for the bptr
register.

The ld and branch instructions only depend on the values of
aptr and bptr and will execute behind them.

I For large matrices, the branch predictor will predict that the branch
is always taken.

F At the end of the loop, the branch operations will be well-ahead of the
floating point operations.

F The mispredicted branch will be detected and the wrong-path
instructions aborted well-before the extra floating point operations are
actually performaed.

I If a load misses in the cache,
F subsequent loads will still issue and be executed.
F This allows multiple cache misses to be processed in an overlapping

manner.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 25 / 31



Inner-loop: pipelining

...

IALU1 IALU1

IALU2

bptr += bstride

FP−LS FP * FP +FP−LS

aptr += 8 branch

*bptr

...
...

...

...

...

Thus, the machine acts like the pipeline shown above.
I Register renaming ensures that the right values are processed by

each instruction.
I The critical bottlenecks for a MIPS R10000 are the floating-point

load-store unit, FP-LS, and the integer ALU, IALU1.
F Each can perform one operation per cycle.
F Each needs to perform two operations per loop iteration.
F Thus, the MIPS R10000 can perform one iteration of the inner loop

every two cycles.
F That’s seven instructions in two clock cycles for an IPC

(instructions-per-cycle) of 3.5.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 26 / 31



Super-scalar scaling (1/2)
For matrix multiply, we got an IPC of 3.5.

I That was assuming no cache misses.
I As noted on slide 25, the out-of-order execution can help reduce

the performance degradation due to cache misses.
I In practice, IPC’s of ∼1.5 are typical for super-scalars running

desk-top applications.
Can we get better performance by increasing the parallelism of
the superscalar?

I Many key structures of the super-scalar have areas that grow
quadratically with the issue width.

F Register-files: both width and height grow linearly with the number of
read and write ports.

F Renaming: to rename W instructions in one cycle,
• the rename unit must compare the destination register num-

bers of earlier instructions with the source register numbers
of later instructions in the batch.

• the number of comparators in the rename unit grows quadrat-
ically with W .

F For similar reasons, the size of the reorder buffer (for graduating
instructions) must grow quadratically with W .

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 27 / 31



Super-scalar scaling (2/2)

In many ways, a super-scalar is a communication maximizing
architecture.
It made sense when wires were cheap and functional units were
expensive.
Programmers like it because it finds the implicit parallelism in the
machine instructions – no special programming is needed.
The trend is for multiple cores with smaller issue-width super
scalars (i.e. smaller values of W ).
Simplified super-scalars (i.e. fetch two instructions per cycle) may
survive for a long time,

I Or we may see that simpler, RISC pipelines prevail,
I or some other simplified architecture.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 28 / 31



Lynn Conway
Worked on first super-scalar processor
design at IBM.
Was subsequently fired from IBM. Why?
Worked as a programmer at Memorex for a
few years, and then went to Xerox PARC.
Collaborated with Carver Mead (Caltech) to
start the “VLSI revolution”

I Key idea was to apply principles of abstract
from computer science to integrated circuit
design.

I footnotesize approach has completely
transformed the industry and made large,
multi-billion transistor designs possible.

For more information, see:
http://ai.eecs.umich.edu/people/conway/
Photo from
http://en.wikipedia.org/wiki/File:Lynn_Conway_July_2006.jpg

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 29 / 31

http://ai.eecs.umich.edu/people/conway/
http://en.wikipedia.org/wiki/File:Lynn_Conway_July_2006.jpg


Why does it matter?

Role models matter
I If your a straight, white or asian, male in computer science,

F then there are lots of people like you who can be role models.
F If you’re like me, you’ll often take this for granted, and not even think

of them as role models.
I The further you are from this “center-of-mass” of the field,

F the sparser role models become,
F and you may feel like you don’t fit in.
F If so, please get the message from this that you’re not the problem.

Lynn Conway has lived a remarkable life
I She’s made important contributions to computer architecture, VLSI

design, and robotics.
I She’s chosen to use her experiences to help others who are facing

similar challenges and discrimination.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 30 / 31



Announcements

Homework 1 due tonight at 11:59pm.
On-line, mid-course survey starts tomorrow – you should be
getting e-mail about it.

Mark Greenstreet () Superscalar Architectures CpSc 448B – Sept. 29, 2011 31 / 31


