Superscalar Architectures

Mark Greenstreet

CpSc 448B — Sept. 29, 2011

Outline:
@ Computer Architecture Overview

» Computers from before when the instructor was born (i.e. really
old).

» Microcoded machines (like you saw in CpSc 121).
» Pipelined machines (like you saw in CpSc 313).

@ Superscalar architectures
@ Matrix multiplication on a superscalar machine.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011

1/31

In the beginning. ..

@ “Computer” was the name for a profession.
» problems that required large numbers of calculations were solved
by rooms full of people.
@ Then, we got mechanical calculators.
@ The first electronic computers were not programmable.

» The various functional units were connected together with “patch
cords” like an old-fashioned telephone exchange.

» The compute would be configured for a particular problem.

» It would run to solve the problem,

» And then it would be reconfigured for the next problem.

@ The use of memory for program and data started was proposed
after WW 1.

@ Each machine had it's own machine language to match its
functional units.

» Software had to be rewritten for each different machine.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 2/31

Microcoded machines

MEM

PC REGI[0:7] ALU
bus—A ¢ $
bus-B

E DJ
53|
& |~
W code [Control
E ROM [T signals
ot -
EX

data

A simple, microcoded machine

@ The microcode (ucode) ROM specifies the sequence of
operations necessary to carry out an instruction.

@ For simplicity, 'm assuming that the op-code bits of the instruction

form the most significant bits of the ucode ROM address, and that
the value of the micro-PC (uPC) form the lower half of the

address.

Mark Greenstreet () Superscalar Architectures

CpSc 448B — Sept. 29, 2011

3/31

Microcode: example

Example: add reg[2], regl[3]

pPC = 0:

uPC = 1:

puPC = 2:

IREG

uPC—op

Mark Greenstreet ()

bus-A
bus-B
ALU-op
bus-A
reg[2]
PC-op
bus-B
mem-op

2 Y Y A A D

bus—-A

PC

REGI[0:7] ALU

MEM

!

—1

data

bus—B

regl[2],
reg([3],
add;

ALU,
bus-A

increment
PC,
read

bus-A

reset

Superscalar Architectures

addr

o]

W code Control

ROM Signals

1212k

CpSc 448B — Sept. 29, 2011

4/31

Microcode: summary

@ Separates hardware from instruction set.
» Different hardware can run the same software.
» Enabled IBM to sell machines with a wide range of performance
that were all compatible
* |.e. IBM built an empire and made a fortune on the IBM 360 and its
successors.
* Intel has done the same with the x86.
@ But, as implemented on slide 3, it's very sequential.

while (true) {
fetch an instruction;
perform the instruction

}

@ Instruction fetch is “overhead”

» Motivates coming up with complicated instructions that perform lots

of operations per instruction fetch.
» But these are hard for compilers to use.
» Can we do better?

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011

5/31

Pipelined instruction execution

ir Registers
rslT TrsZ

inst opl data data data
inst. decode{ yop2 _| ALU [addr_| MEM [Write—|
fetch back

ctrl ctrl ctrl ctrl rd

addr ¢ T data ‘dddfl i data

1$ D$
¢ Address ¢

Data i

MEM[A Piplelined (RISC) CPU

@ Successive instructions in each stage

@ When instruction i in i fetch, instruction 1-1 in decode, ...

@ Allows throughput of one instruction per cycle.

@ Favors simple instructions that execute on a single pass through
the pipeline.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 6/31

Pipeline Hazards (1/2)

i Registers
sl T TrsZ
inst opl data data data
inst. decode] Yop2 | ALU | addr_|MEM ' Write—|
fetch back
ctrl ctrl ctrl ctrl rd

3 %

@ A hazard occurs if pipelined instruction execution produces a
different result than sequential execution.

@ Data hazard: instruction i reads register (in decode stage) that
instruction i—1 will write later (in Write-back)

» Standard solution: bypasses.
» Decode broadcasts registers to be fetched to all pipestages:

* |f a stage has an instruction that will write that register.
* |t provides the value or forces a stall.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 7/31

Pipeline Hazards (2/2)

i Registers
sl T Trs2
inst opl data data data
inst. decode{ yop2 _| ALU [addr_|MEM ' Write—|
fetch back
ctrl ctrl ctrl ctrl rd

3 %

@ Control Hazard: branch not resolved before next instruction
fetched.
» Standard solutions:

* Resolve branches early (in decode stage).
* Expose one-cycle “delay-slot” to compiler/assembler.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011

8/31

Exceptions

An exception causes the CPU to switch to executing a different
sequence of instructions:

@ system calls: trap into the operating system, switch from user to
supervisor execution mode.

@ page faults: the virtual address for a load or store doesn’t have a
corresponding physical memory location. Trap into the OS to bring
the appropriate page in from disk and update the page tables.

@ other exceptions caused by software: illegal addresses, overflow,
illegal instruction. ...

@ interrupts = exceptions caused by the hardware

I/O device interrupts (e.g. data ready from disk)

timer interrupts (e.g. the timer for the process scheduler)

hardware failures (e.g. uncorrectable memory read error)

some notebook computers have an accelerometer interrupt:

“This laptop is falling, retract the disk heads before impact.”

v

vV vy

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 9/31

Precise Exceptions

@ To restart a process after handling an exception, the OS needs to
be able to reconstruct the process state. This also helps to identify
the cause of the exception.

@ An exception is precise if:

» The exception is associated with a particular instruction.

» All instructions (in program order) prior to the faulting instruction
complete execution.

» The faulting instruction and all subsequent ones appear to have
never started.

@ Programmers love precise exceptions, especially systems
programmers ©.

@ Precise exceptions are fairly straightforward to implement on an
“old-fashioned” CPU:

» Some complex instructions can cause challenges.
» E.g. how do you handle a page-fault in the middle of a huge
memory-block-copy instruction?

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 10/31

Precise Exceptions on a RISC

@ How to do it:
» Let the faulting instruction continue to the write-back stage.
» When it reaches write-back, cancel all instructions in previous
stages.
* This means making sure that the following instruction doesn’'t do a
write in the MEM stage.
» Handle the exception.
» The process can resume by restarting at the faulting instruction.

@ Exceptions and hazards:
» Data hazards: must be handled by bypasses and stalls.
Can’t have the result from instruction i visible to instruction i+1
only if instruction i faults.
» Control hazards: record delay-slot info as part as part of the
per-process data in the OS kernel.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011

11/31

Outline

@ Computer Architecture Overview
@ Superscalar architectures

» Multiple-instruction issue
» Register renaming
» Branches, exceptions, memory accesses

@ Matrix multiplication on a superscalar machine.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 12/31

Superscalar Processors
A Superscalar CPU

inst. decode
&
fetch lrename
reg.
1 map

Integer

Registers

ALU

ALU]

LS1

D$

s

Issue Queues

FP1

]

FP2

[Float.—Point]

Registers

T

1

rCOracr

buffer
]

Mark Greenstreet ()

MEM

Superscalar Architectures

CpSc 448B — Sept. 29, 2011

13/31

Superscalar Execution

@ Fetch several, W, instructions each cycle.

@ Decode them in parallel, and send them to issue queues for the
appropriate functional unit.

@ But what about hazards?

» We need to make sure that data and dependencies are properly
observed.

» Code should execute on a superscalar as if it were executing on
sequential, on-instruction-at-a-time machine.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011

14/31

Register Renaming

Like everything else in computer science, superscalars just add
another level of indirection to solve the problem of data dependencies.
@ Logical and Physical Registers
» Machine-code (assembly) instructions refer to logical registers.
» The machine stores values in physical registers.
» The machine maintains a mapping between the logical and physical
registers.
@ Renaming:
» When an instruction is decoded,

* logical registers that it reads are mapped to physical register
according to the current register map.
* for each register that the instruction writes:

e a physical register is allocated from a free list.

o the register map is updated to make this new
physical register for the logical register written by the
instruction.

» I'll explain how registers get back to the freelist shortly.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 15/31

Renaming Example (1/2)

Consider executing:

add s$5, $2, $3 % reg[5] - regl[2] + reg[3]
st 24(%8), $5 % MEM[24+$8] — reg[4]
...085, $7, #0x7f % the nextinstruction to write reg[5]
With
@ Physical registers P47 and P23 the next two entries on the freelist.

@ The current register map includes:
Logical — Physical

2 14
3 61
4 21
5 38

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 16/31

Renaming Example (2/2)

@ When add $5, $2, $3 goes through decode and rename
» it becomes add P47, P14, P61.
» register P47 is removed from the free list and marked as busy.
» the “renamed” instruction is added to the issue-queue of an ALU.

@ Ifregister P14 or P61 are marked as busy,

» that indicates that the instruction that will set the value for that
register hasn’t executed yet.
» the add instruction will have to wait.

@ When both registers P14 or P61 are marked as ready (or
graduated), then the add instruction can execute.

@ When add P47, P14, P61 executes, register P47 is marked as
ready.

@ When all instructions that came before add P47, P14, Pé6lin
program order have graduated, then register P47 graduates as
well.

@ When the instruction or $5, $7, #0x7f graduates, then
register P47 returns to the freelist.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 17/31

The Lifecyle of a Register (1/2)

next writer of this register
(by program order)
graduates

Register allocated
in rename

Functional unit

Previ in ion
evious Istructio computes result.

(by program order)
graduates.

@ Renaming constructs a graph that reflects the data dependencies
of the program.
@ It removes “false” hazards such as
» Write-after-write:
* Two instructions that write the same logical register can execute in
either order.
* The last one in program order will be the last one to graduate.
» Write-after-read:
* An instruction that writes a logical register can execute before an
earlier instruction that reads the same logical register.
* That’s because the two occurrences of the logical register map to
different physical registers.
Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 18/31

The Lifecyle of a Register (1/2)

next writer of this register
(by program order)
graduates

Register allocated
in rename

Functional unit

Previous instruction
evious Instructio computes result.

(by program order)
graduates.

@ Renaming removes “false” hazards such as
» Write-after-write.
» Write-after-read.
@ The set of graduated registers corresponds to the state of a
sequential execution of the program after executing the last
graduated instruction.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011

19/31

Branch Prediction

@ A branch may not be resolved until several cycles after it is
fetched.

@ Many instructions will have been fetched, decoded, queued and
perhaps executed (but not graduated) in the meantime.
» How does the processor determine which instructions to fetch?
@ Speculate
» Keep track of recent history of branches — typically with “saturating
counters’.
» If the counter predicts branch taken, the fetch unit sees this and
fetches from the branch target.
» If the counter predicts branch not-taken, the fetch unit continues
fetching in sequence.
» If a branch is mispredicted
* Then the wrong path instructions are aborted.
* The processor resumes execution down the correct path.
* Branch mispredict penalties can be large.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 20/ 31

Does Branch Prediction Work?
Good:
@ For-loops with many executions: predict branch taken.
@ If statements of the form
if (condition) {
take care of the common case;
} else {
handle unusual situation;
}

— predict branch not taken (i.e. then clause will be executed).
Bad:
@ Data dependent branches:
while ((x < xtop) && (y < ytp)) { % merge-loop
if(*x < *xy) *(z++) = x (x++);
else *(z++) = x(y++);
}
@ If the data to be sorted is random
» Any branch predictor will be wrong 50% of the time.
» Even the mispredicted path can help reduce cache-misses.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011

21/31

Exceptions on a Superscalar

@ Instructions commit in program order =
» Take the exception when the instruction would graduate.

@ This ensures that all previous instructions have graduated.
@ Abort all subsequent instructions.
» This ensures that the current instruction and all subsequent ones
appear to have never started.
» Register restored by unwinding the register mappings to the point
they were just before decoding and mapping the faulting instruction.

» Memory has the correct values because stores are delayed until
the store instruction graduates.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 22/31

Example: matrix multiply

for (int 1

0;
for(int j =

i < n.rows.a; i++) {
0; j < ncolsb; j++) {
sum = 0.0; for(int k = 0; k < n_.cols.a; k++) {
% n.cols_.a =n_rows_b
sum += afli,k] % blk,Jl;
}
cl[i,j] = sum;
}
}

Mark Greenstreet ()

Superscalar Architectures

Inner-Loop: Dependencies

: 1d *aptr B
: aptr += 8 —
: 1d *bptr
: bptr += bstride
: (double) *
(double) +
branch

8: 1d *aptr
9: aptr += 8
10: 1d *bptr
11: bptr += bstride
12: (double) *

15: 1d *aptr

16: aptr += 8

17: 1d *bptr

18: bptr += bstride -
19: (double) *

20: (double) +

21: branch

S o0 i W N

@ Number to the left of instructions indicate the program order of
instruction execution.

@ Magenta arcs indicate data dependencies within a single iteration
of the loop body.

@ Green arcs indicate data dependencies between loop iterations.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 24/ 31

Inner-Loop: Execution

@ The pointer increments only depend on the previous loop:
» These can “run ahead” of the rest of the instructions, computing
addresses well in advance.
» With renaming, there will one physical registers per active loop

iteration for the apt r logical register, and likewise for the bptr
register.

@ The 1d and branch instructions only depend on the values of
aptr and bptr and will execute behind them.

» For large matrices, the branch predictor will predict that the branch
is always taken.

* At the end of the loop, the branch operations will be well-ahead of the
floating point operations.

* The mispredicted branch will be detected and the wrong-path
instructions aborted well-before the extra floating point operations are
actually performaed.

» If a load misses in the cache,
* subsequent loads will still issue and be executed.

* This allows multiple cache misses to be processed in an overlapping
manner.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 25/31

Inner-loop: pipelining

aptr += 8 branch

/ TIALU1 TIALU1 |

bptr += bstride *bptr

/ IALU2 }iFP LS

@ Thus, the machine acts like the pipeline shown above.
» Register renaming ensures that the right values are processed by
each instruction.
» The critical bottlenecks for a MIPS R10000 are the floating-point
load-store unit, FP-Ls, and the integer ALU, IALU1.
* Each can perform one operation per cycle.
* Each needs to perform two operations per loop iteration.
* Thus, the MIPS R10000 can perform one iteration of the inner loop
every two cycles.
* That’s seven instructions in two clock cycles for an IPC
(instructions-per-cycle) of 3.5.

FP-LS FP * FP +

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 26/ 31

Super-scalar scaling (1/2)

@ For matrix multiply, we got an IPC of 3.5.
» That was assuming no cache misses.
» As noted on slide 25, the out-of-order execution can help reduce
the performance degradation due to cache misses.
» In practice, IPC’s of ~1.5 are typical for super-scalars running
desk-top applications.
@ Can we get better performance by increasing the parallelism of
the superscalar?
» Many key structures of the super-scalar have areas that grow
quadratically with the issue width.
* Register-files: both width and height grow linearly with the number of
read and write ports.
* Renaming: to rename W instructions in one cycle,

e the rename unit must compare the destination register num-
bers of earlier instructions with the source register numbers
of later instructions in the batch.

e the number of comparators in the rename unit grows quadrat-
ically with W.

* For similar reasons, the size of the reorder buffer (for graduating
instructions) must grow quadratically with W.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 27 /31

Super-scalar scaling (2/2)

@ In many ways, a super-scalar is a communication maximizing
architecture.

@ It made sense when wires were cheap and functional units were
expensive.

@ Programmers like it because it finds the implicit parallelism in the
machine instructions — no special programming is needed.

@ The trend is for multiple cores with smaller issue-width super
scalars (i.e. smaller values of W).

@ Simplified super-scalars (i.e. fetch two instructions per cycle) may
survive for a long time,

» Or we may see that simpler, RISC pipelines prevalil,
» or some other simplified architecture.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 28/ 31

Lynn Conway

@ Worked on first super-scalar processor
design at IBM.

@ Was subsequently fired from IBM. Why?

@ Worked as a programmer at Memorex for a
few years, and then went to Xerox PARC.

@ Collaborated with Carver Mead (Caltech) to
start the “VLSI revolution”

» Key idea was to apply principles of abstract
from computer science to integrated circuit
design.

» footnotesize approach has completely
transformed the industry and made large,
multi-billion transistor designs possible.

@ For more information, see:
http://ai.eecs.umich.edu/people/conway/
Photo from
http://en.wikipedia.org/wiki/File:Lynn_Conway_July_2006.jpg

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 29/31

http://ai.eecs.umich.edu/people/conway/
http://en.wikipedia.org/wiki/File:Lynn_Conway_July_2006.jpg

Why does it matter?

@ Role models matter

» If your a straight, white or asian, male in computer science,
* then there are lots of people like you who can be role models.
* If you're like me, you'll often take this for granted, and not even think

of them as role models.

» The further you are from this “center-of-mass” of the field,
* the sparser role models become,
* and you may feel like you don't fit in.
* If so, please get the message from this that you're not the problem.

@ Lynn Conway has lived a remarkable life

» She’s made important contributions to computer architecture, VLSI
design, and robotics.

» She’s chosen to use her experiences to help others who are facing
similar challenges and discrimination.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 30/ 31

Announcements

@ Homework 1 due tonight at 11:59pm.

@ On-line, mid-course survey starts tomorrow — you should be
getting e-mail about it.

Mark Greenstreet () Superscalar Architectures CpSc 448B — Sept. 29, 2011 31/31

