Matrix Multiplication

Mark Greenstreet

CpSc 448B — Sept. 27, 2011

Ouitline:
@ Sequential Matrix Multiplication
@ Parallel Implementations, Performance, and Trade-Offs.

Mark Greenstreet () Matrix Multiplication CpSc 448B — Sept. 27, 2011

1/15

Sequential Matrix Multiplication

for(int i = 0; i < n.rows.a; i++) {
for(int j = 0; j < n.colsDb; j++) {
sum = 0.0;

for(int k = 0; k < n.cols.a; k++) {
% n_cols_a=n_rows_b
sum += al[i,k] % blk,Jl;

}

cli, j] = sum;

Mark Greenstreet () Matrix Multiplication

Performance

@ Really simple, operation counts:
Multiplications: n_rows_a *n_cols_b*n_cols_a.
Additions: n_rows_a *n_cols b * (n_.cols_a —1).
Memory-reads: 2x#Multiplications.
Memory-writes: n_rows_a *xn_cols b.
Time is O(n_rows_a *n_cols_b x (n_.cols_a — 1)),
If both matrices are N x N, then its O(N®).
@ But, memory access can be terrible.
» For example, let matrices a and b be 1000 x 1000.
» Assume a processor with a 4M L2-cache (final cache), 32
byte-cache lines, and a 200 cycle stall for main memory accesses.
» Observe that a row of matrix a and a column of b fit in the cache. (a
total of ~40K bytes).
» But, all of b does not fit in the cache (that's 8 Mbytes).
» So, on every fourth pass through the inner loop, every read from b
is a cache miss!
» The cache miss time would dominate everything else.

@ This is why there are carefully tuned numerical libraries.

vV vy vy VvYyy

Mark Greenstreet () Matrix Multiplication CpSc 448B — Sept. 27, 2011 3/15

Parallel Algorithm 1

A B AXB

X = 1%

@ Parallelize the outer-loop.

@ Each iteration of the outer-loop multiplies a l:| X
row of A by all of B to produce a row of A x B.

@ Divide A (and B) into blocks.
@ Each processor sends its blocks of B to all of

the the other processors. l:| X

@ Now, each processor has a block of rows of
A and all of B. The processor computes it's
part of the product to produce a block of rows

of C.
X
@ Note: OpenMP does this kind of
parallelization automatically.

Mark Greenstreet () Matrix Multiplication CpSc 448B — Sept. 27, 2011 4/15

Algorithm 1 in Erlang

parmatrixmultl (ProcList, MyIndex, MyBlockA, MyBlockB) ->
NProcs = length (ProcList),
% send MyBlock to all other processes

[P ! {MyIndex, MyBlock} || P <- Proclist],
% receive all the blocks
Bblocks = [receive I, Block -> Block end

|| I <= lists:seqg(l,NProcs)],
% concatenate these blocks to make the B matrix
B = lists:append(Bblocks),
matrix:mult (MyBlockA, MyBlockB). % ourblock of A*B

The math:
@ Let A(/,:) denote the i" row of A, and
@ Let B(:, /) denote the j” column of B.
@ Let C=AxBwehave: C(i,:) = A(i,:) xB.
@ In English:
» The processor that holds a block of rows of A can compute the
corresponding rows of C.
» The processor has to have all of B. That's what the sends and
receives do at the begining of par matrixmultl.

Mark Greenstreet () Matrix Multiplication CpSc 448B — Sept. 27, 2011 5/15

Performance of Parallel Algorithm 1

@ CPU operations: same total number of multiplies and adds, but
distributed around P processors. Total time: O(N3/P).

@ Communication: Each processors sends (and receives) P — 1
messages of size N?/P. If time to send a message is ty + t; *x M
where M is the size of the message, then the commmunication
time is

2
(P—1) (to + 4 A;) = O(N? + P), but, beware of large constants
= O(N?), N2 > P

@ Memory: Each process needs O(N?/P) storage for its block of A
and the result. It also needs O(N?) to hold all of B.

» The simple algorithm divides the computation across all processors,
but it doesn’t make good use of their combined memory.

Mark Greenstreet () Matrix Multiplication CpSc 448B — Sept. 27, 2011 6/15

B

Parallel Algorithm 2 (illustrated)
A

7/15

CpSc 448B — Sept. 27, 2011

Matrix Multiplication

Mark Greenstreet ()

Parallel Algorithm 2 (code sketch)

@ Each processor first computes what it can with its rows from A and
B.
» It can only use N/P of its columns of its block from A.
» |t uses its entire block from B.
» We’ve now computed one of P matrices, where the sum of all of
these matrices is the matrix AB.
@ We view the processors as being arranged in a ring,
» Each processor forwards its block of B to the next processor in the
ring.
» Each processor computes an new partial product of AB and adds it
to what it had from the previous step.
» This process continues until every block of B has been used by
every processor.

Mark Greenstreet () Matrix Multiplication CpSc 448B — Sept. 27, 2011 8/15

Algorithm 2, Erlang

parmatrixmultl (ProcList, MyIndex, MyBlockA, MyBlockB) ->
NProcs = length (ProcList),
NRowsA length(a),
NColsB length (hd(B)), % assume length(B) > 0
ABlocks0 = rotate (MyIndex, blockify_cols (A, NProcs)),
PList = rotate (NProcs - (MyIndex-1),
lists:reverse (ProcList)),

helper (ProcList, ABlocks, MyBlockB,

matrix:zeros (NRowsA, NColsB)).

helper ([P.head | P_taill], [A-head | A_tail], BBlock, Accum) ->

if Atail == [] -> ok;
true -> P_head ! BBlock
end,
Accum2 = matrix:add(Accum, matrix:mult (A_head, BBlock)),
if Atail == [] —-> Accum2;
true —->

helper(P_tail, A_tail, receive BBlock2 -> BBlock2 end,
end.

Mark Greenstreet () Matrix Multiplication CpSc 448B — Sept. 27, 2011 9/15

Algorithm 2 — notes on the Erlang code

@ blockify cols (A, NProcs) produces a list of NProcs
matrices.

» Each matrix has NRowsA rows and NColsa columns,
» where NColsA is the number of columns of MyBlockA.
» Let A(MyTIndex,) denote the j% such block.

@ rotate (N, List) ->

{L1, 12} = lists:split (N, List),
L2 ++ L1.

@ The algorithm is based on the formula:

NProcs
C(MyIndex,:) = Z A(MyIndex,j)* B(J,:)
j=1

Mark Greenstreet () Matrix Multiplication CpSc 448B — Sept. 27, 2011

10/15

Performance of Parallel Algorithm 2

@ CPU operations: Same as for parallel algorithm 1: total time:
O(N®/P).
@ Communication: Same as for parallel algorithm 1: O(N + P).
» With algorithm 1, each processor sent the same message to P — 1
different processors.
» With algorithm 2, for each processor, there is one destination to
which it sends P — 1 different messages.
» Thus, algorithm 2 can work efficiently with simpler interconnect
networks.

@ Memory: Each process needs O(N?/P) storage for its block of A,
its current block of B, and its block of the result.

» Note: each processor might hold onto its original block of B so we
still have the blocks of B available at the expected processors for
future operations.

@ Do the memory savings matter?

Mark Greenstreet () Matrix Multiplication CpSc 448B — Sept. 27, 2011 11/15

Bad performance, pass it on

@ Consider what happens with algorithm 2 if one processor, Psjon
takes a bit longer than the others one of the times its doing a block
multiply.

» Pgow Will send it’s block from B to its neighbour a bit later than it
would have otherwise.

» Even if the neighbour had finished its previous computation on time,
it won’t be able to start the next one until it gets the block of B from
Pslow-

» Thus, for the next block computation, both Pg,, and its neighbour
will be late, even if both of them do their next block computation in
the usual time.

» In other words, tardiness propagates.

@ Solution: forward your block to you neighbour before you use it to
perform a block computation.

» This overlaps computation with communication, generally a good
idea.

» We could send two or more blocks ahead if needed to compensate
for communication delays and variation in compute times.

» This is a way to save time by using more memory.

Mark Greenstreet () Matrix Multiplication CpSc 448B — Sept. 27, 2011 12/15

Even less communication

@ In the previous algorithms, computate time grows as N3/P, while
communication time goes as (N + P).

@ Thus, if N is big enough, computation time will dominate
communication time.

@ There’s not much we can do to reduce the number of
computations required (I'll ignore Strassen’s algorithm, etc. for
simplicity).

@ If we can use less communication, then we’ll we won’t need our
matrices to be as huge to benefit from parallel computation.

Mark Greenstreet () Matrix Multiplication CpSc 448B — Sept. 27, 2011 13/15

Other ways to distribute a matrix

Mark Greenstreet () Matrix Multiplication CpSc 448B — Sept. 27, 2011 14/15

Lower bound for communication

Mark Greenstreet () Matrix Multiplication

