
Quantifying Performance

Mark Greenstreet

CpSc 448B – Sept. 20, 2011

Outline:
Measuring Performance
Count 3’s performance

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 1 / 22



Parallel Programming and Performance

The main motivation for parallel programming is performance
I Time: make a program run faster.
I Space: allow a program to run with more memory.

To make a program run faster, we need to know how fast it is
running.
There are many possible measures:

I Latency: time from starting a task until it completes.
I Throughput: the rate at which tasks are completed.
I Key observation:

throughput =
1

latency
, sequential programming

throughput ≥ 1
latency

, parallel programming

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 2 / 22



Speed-Up

Simple definition:

speed − up =
time(sequential− execution)

time(parallel− execution)

But beware of the spin:
I Is “time” latency or throughput?
I How big is the problem?
I What is the sequential version:

F The parallel code run on one processor?
F The fastest possible sequential implementation?
F Something elseW, NW, ParentPid, S, Leaf, Combine, Root?

More practically, how do we measure time?

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 3 / 22



Time complexity

What is the time complexity of sorting?
I What are you counting?
I Why do you care?

What is the time complexity of matrix multiplication?
I What are you counting?
I Why do you care?

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 4 / 22



Big-O and Wall-Clock Time
In our algorithms classes, we count “operations” because we have some
belief that they have something to do with how long the actual program
will take to execute.

I Or maybe not. Some would argue that we count “operations”
because it allows us to use nifty techniques from discrete math.

I I’ll take the position that the discrete math is nifty because it tells us
something useful about what our software will do.

In our architecture classes, we got the formula:

time =
(#inst. executed) ∗ (cycles/instruction)

clock frequency

The approach in algorithms class of counting comparisons or
multiplications, etc., is based on the idea that everything else is done in
proportion to these algorithms.
BUT, in parallel programming, we can find that a communication
between processes can take 1000 times longer than a comparison or
multiplication.

I The may not matter if you’re willing to ignore “constant factors.”
I In practice, factors of 1000 are too big to ignore.

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 5 / 22



Overhead

Ideally, we would like a parallel program to run P times faster than
the sequential version when run on P processors.
In practice, this rarely happens because of:

I Overhead: work that the parallel program has to do that isn’t
needed in the sequential program.

I Non-parallelizable code: something that has to be done
sequentially.

I Idle processors: There’s work to do, but some processor are
waiting for something so before they can work on it.

I Resource contention: Too many processors overloading a limited
resource.

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 6 / 22



Communication Overhead

In a parallel program, data must be sent between processors.
This isn’t a part of the sequential program.
The time to send and receive data is overhead.
Communication overhead occurs with both shared-memory and
message passing machines and programs.

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 7 / 22



Communication with shared-memory

In a shared memory architecture:
I Each core has it’s own cache.
I The caches communicate to make sure that all references from

different cores to the same address look like their is one, common
memory.

I It takes longer to access data from a remote cache than from the
local cache. This creates overhead.

False sharing can create communication overhead even when
there is no logical sharing of data.

I This occurs if two processors repeatedly modify different locations
on the same cache line.

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 8 / 22



Communication overhead with message passing

The time to transmit the message through the network.
There is also a CPU overhead: the time set up the transmission
and the time to receive the message.
The context switches between the parallel application and the
operating system adds even more time.
Note that many of these overheads can be reduced if the sender
and receiver are different threads of the same process running on
the same CPU.

I This has led to SMP implementations of Erlang, MPI, and other
message passing parallel programming frameworks.

I The overheads for message passing on an SMP can be very close
to those of a program that explicitly uses shared memory.

I This allows the programmer to have one parallel programming
model for both threads on a multi-core processor and for multiple
processes on different machines in a cluster.

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 9 / 22



Synchronization Overhead

Parallel processes must coordinate their operations.
For shared-memory programs (e.g. pthreads or Java
threads, there are explicit locks or other synchronization
mechanisms.
For message passing (e.g. Erlang or MPI), synchronization is
accomplished by communication.

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 10 / 22



Computation Overhead

Computation: a parallel program may perform computation that is
not done by the sequential program.

I Redundant computation: it’s faster to recompute the same thing on
each processor than to broadcast.

I Algorithm: sometimes the fastest parallel algorithm is
fundamentally different than the fastest sequential one, and the
parallel one performs more operations.

Memory: The total memory needed for P processes may be
greater than that needed by one process due to replicated data
structures and code.

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 11 / 22



Prime-Sieve: Sequential Version

% Sieve of Eratosthenes
int primes[N];
primes[0] = 0; primes[1] = 0;
for(int i = 2; i < N; i++)

primes[i] = 1; //% assumed prime until proven composite
int lastp = 1; % look for primes starting at lastp+1
int top = sqrt(N);% any composite ≤ N has a factor ≤ top
while(lastp < top) {

int p; % next line sets p to next prime
for(p = lastp+1; (p < N) && (primes[p] == 0); p++);
for(c = 2*p; c < N; c += p)

primes[c] = 0;% c is a multiple of p, hence composite
lastp = p;

}
% that’s it!

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 12 / 22



Prime-Sieve: Parallel Version

Main idea
I Find primes from 1 . . .

√
N.

I Divide
√

N + 1 . . .N evenly between processors.
I Have each processor find primes in its interval.

We can speed up this program by having each processor compute
the primes from 1 . . .

√
N?

I Why does doing extra computation make the code faster?

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 13 / 22



Overhead: Summary

Overhead is loss of performance due to extra work that the parallel
program does that is not performed by the seqential version. This
includes:

Synchronization
Communication
Extra Computation
Extra Memory

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 14 / 22



Non-parallelizable Code

Finding the length of a linked list:
int length=0;
for(List p = listHead; p != null; p = p->next)

length++;

I Must dereference each p->next before it can dereference the next
one.

I Could make more parallel by using a different data structure to
represent lists (some kind of skiplist, or tree, etc.)

Searching a binary tree
I Requires 2k processes to get factor of k speed-up.
I Not practical in most cases.
I Again, could consider using another data structure.

Interpretting a sequential program.

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 15 / 22



Amdahl’s Law

Given a sequential program where
I fraction s of the execution time is inherently sequential.
I fraction 1− s of the execution time benefits perfectly from speed-up.

The run-time on P processors is:

Tparallel = Tsequential ∗ (s + 1− s
P )

Consequences:
I Define

speed − up =
Tsequential
Tparallel

I Speed-up on P processors is at most 1
s .

I Gene Amdahl argued in 1967 that this limit means that parallel
computers are only useful for a few special applications where s is
very small.

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 16 / 22



Amdahl’s Law, 44 years later

Amdahl’s law is an economic law, not a physical law.
I Amdahl’s law was formulated when CPUs were expensive.
I Today, CPUs are cheap

F The cost of fabricating eight cores on a die is very little more that the
cost of fabricating one.

F Computer cost is dominated by the rest of the system: memory, disk,
network, monitor, . . .

Amdahl’s law assumes a fixed problem size . . .

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 17 / 22



Amdahl’s Law, 44 years later
Amdahl’s law is an economic law, not a physical law.

I Amdahl’s law was formulated when CPUs were expensive.
I Today, CPUs are cheap (see previous slide)

Amdahl’s law assumes a fixed problem size
I Many computations have s (sequential fraction) that decreases as

N (problem size) increases.
I Having lots of cheap CPUs available will

F Change our ideas of what computations are easy and which are hard.
F Determine what the “killer-apps” will be in the next ten years.

• Ten years from now, people will just take it for
granted that most new computer applications will be
parallel.

I Examples:
F Managing/searching/mining massive data sets.
F Scientific computation

• Note that most of the computation for animation and
rendering resembles scientific computation.
Computer games benefit tremendously from
parallelism.
• Likewise for multimedia computing.

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 18 / 22



Software is Expensive

On the previous slide, I noted that CPUs are essentially free.
I But programming them isn’t.

Hardware is already free.
I Software is the problem.

The challenge in exploiting parallelism is a software problem.
I We need to understand the architectural issues so we can develop

programming abstractions that match performance reality.

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 19 / 22



Overhead: Idle CPUs

There are idle processors and work to do, but the processors can’t do
the work, because:

Load imbalance:
I A few processors get tasks that take longer than the others.
I This is especially a problem if it’s hard to determine how long a task

will take without running it.
Start-up and ending costs

I Some problems start with one process that spawns tasks for other
processors to execute.

I Initially, the other processors are idle, waiting for the first processor
to spawn tasks.

I A similar problem can occur collecting results at the end.

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 20 / 22



Contention

Multiple processors need the same resource.
Disk access.
Main memory access with a SMP.
Network access with a cluster.

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 21 / 22



On a really good day, you win
Embarrassingly parallel applications

I Problems that can run nearly independently on a large number of
processors.

I Monte Carlo simulations, ray tracing, factoring huge numbers, . . .
Superlinear speed-up

I Occasionally, a parallel program with P processors is more than P
times faster than the sequential version.

F More, fast memory:
multiple CPUs have more total registers, more cache memory, more
I/O bandwidth, etc.

F A different algorithm:
• The natural parallel algorithm may visit a data
structure in a different order than the sequential
algorithm.
• This can, for example, result in faster pruning for a
search for some applications.
• If the sequential version is modified to do the same
thing, it may be too complicated, resulting in
sequential overhead.

Mark Greenstreet () Quantifying Performance CpSc 448B – Sept. 20, 2011 22 / 22


