
Introduction to Erlang

Mark Greenstreet

CpSc 448B – Sept. 13 & 15, 2011

Outline:
Why Erlang?
Erlang by Example

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 1 / 58



Why Parallel Programming is Hard

Programming is hard.
Parallel programming adds more complixity:

I Finding parallelism.
I Coordination: avoiding races and deadlocks.
I Keeping overhead under control.

We need to simplify something to make cognitive room for
parallelism:

I Example: Google’s map-reduce paradigm.
Everything is divide-and-conquer. (also Hadoop).

I Example: nVidia’s data parallelism – CUDA.
Everything is a big, homogeneous array.

I Example: Parallel functional programming: Erlang
Everything is side-effect free.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 2 / 58



Functional Programming and Erlang

Programming without state.
Referential transparency.
Life without loops.
Definitions vs. recipes.
Thanks: this section was adopted from slides that Kurt Eiselt
prepared for CPSC 312.

“A language that doesn’t affect the way you think about programming
is not worth knowing.” (Alan Perlis)

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 3 / 58



What is Functional Programming?

Imperative programming (C, C++, Java, Ruby, Fortran, perl, . . . ) is
a programming model that corresponds to the von Neumann
computer:

I A program is a sequence of statements.
Each statement can be translated into a sequence of machine
instructions.

I Control-flow (if, for, while, function calls, etc.)
Each control-flow construct can be implemented using branch,
jump, and call instructions.

Functional programming (Erlang, lisp, scheme, haskell, ML, . . . ) is
a programming model that corresponds to mathematical
definitions.

I A program is a collection of definitions.
I These include definitions of expressions.
I Expressions can be evaluated to produce results.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 4 / 58



Programming and State

In an imperative program, statements modify the values of
variables. For example,

I x = y+3; sets the value of x to the sum of the value of y and 3.
I The old value of x is overwritten (i.e. destroyed).
I Note that this is what make debugging hard:

F You can see that your program computed an incorrect value or
reached a point in the control-flow where it shouldn’t be.

F BUT you can’t see how it got there, because intermediate results that
led to this point are now gone.

In a functional language, declarations associate values with
variables.

I A variable gets a value when it is declared.
I This value is never changed.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 5 / 58



Referential Transparency
In a functional program, every function call with the same
parameters returns the same result. Every time. This is a result of
a mathematical and functional programming principle called
referential transparency.
Thus, cos(π/4) =

√
2/2 every time you call cos. You don’t get

different values for the cosine of the same argument with different
calls.
Isn’t this obvious?

I Apparently not. In imperative languages (such as C or Java) a
function can have side effects, it can change the value of global
state:

int countCalls(args ...) {
static ncalls = 0;
return(++ncalls);

}
Successive calls to countCalls return different values.

I We rely on this: I/O functions, memory allocation, object
construction, and much much more.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 6 / 58



Side Effects
As noted above, imperative languages rely on having functions with side
effects.
But, if a function (e.g. cos) has side-effects and returns different values
on different calls with the same argument, most of us will get confused.
How do we know when a function has side-effects?

I “It should be ‘obvious’ when you think about what the function
does.”

I BUT, if you think about the function differently than I do, and we are
working on the same project, life can get very confusing very
quickly.

I So, we need to document all of the side-effects, and pay attention
to the documentation. Of course, this doesn’t really happen in the
real world.

Functional programming solves these problems by excluding
side-effects.

I Of course, that means we’ll have to think about things like I/O,
memory allocation, loops and other constructs in a different way.

I This is what makes functional programming both much easier and
much harder than imperative programming.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 7 / 58



Back to Referential Transparency

It’s not difficult to see that referentially-transparent programs are
easier to work with (e.g., make correct, debug, prove correct) than
those that are referentially opaque. Processing referentially
opaque programs also requires more complex compilers or
interpreters.
The bad news is that to make referentially-transparent programs,
you have to learn how to write programs that don’t rely on side
effects. And that means you’ll have to give up your beloved
assignment statements.
In ten words or less, that’s functional programming: you give up
side effects to gain referential transparency.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 8 / 58



Getting Erlang

You can run erlang by giving the command erl on any
departmental machine. For example:

I Linux: bowen, lin01, . . . , lin25, . . . ,
I Solaris: galiano, gambier

all machines above are .ugrad.cs.ubc.ca, e.g.
bowen.ugrad.cs.ubc.ca, etc.
Or, download it for your own computer.

I See http://www.erlang.org/download.html
I I followed the instructions at

http://sacharya.com/erlang-on-mac-osx/
to install Erlang on my laptop (OSX snow-leopard).

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 9 / 58

http://www.erlang.org/download.html
http://sacharya.com/erlang-on-mac-osx/


Starting Erlang

Start the erlang interpretter.
gambier % erl
Erlang R14B (erts-5.8.1) [source]
[smp:64:64][rq:64][async-threads:0]
[kernel-poll:false]

Eshell V5.8.1 (abort with ∧G)
1> 2+3.
5
2>

The erlang intepretter evaluates expressions that you type.
Expressions end with a “.” (period).

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 10 / 58



Factorial in Erlang

m1.erl:
-module(m1). % This module is named m1
-export([fac/1]). % m1 exports one function, named fac
fac(0) -> 1; % Base case;
fac(N) -> N*fac(N-1). % recursive case.

Let’s try it:
2> c(m1).
{ok,m1}
3> m1:fac(1) % invoke a function with ModuleName:FunctionName(Args).
1
4> m1:fac(3).
6
5> m1:fac(100).
933262154439441526816992388562667004907159682643816214
685929638952175999932299156089414639761565182862536979
20827223758251185210916864000000000000000000000000
6> m1:fac(0).
1

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 11 / 58



Integers and Floats

Integer constants are pretty much what you would expect.
I Integers can be arbitarily large. (See slide 11 for an example.)
I $c is the ASCII value of the character c.
I base#value is an integer constant represented in base base.
base must be an integer in 2. . . 36.

Floating point constants are pretty much what you would expect.
I Erlang requires at least one digit on each side of the decimal point.
I 1e3 is not a valid erlang floating point constant.
I 1.0e3 is ok.

Examples:
7> $e.
101 % ASCII for e
8> 16#DE1.
3553 % Hexadecimal
9> 16#2a.
42 % Upper or lower case ok

10> 2e3.

* 1: syntax error before: e3

11> .2e4.

* 1: syntax error before: 2

12> 2.0e3.
2.0e3

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 12 / 58



Variables

A variable name is any non-empty sequence of
I letters, a. . .z and A. . . Z,
I digits, 0. . .9, and
I underscores, ,
I where the first character is an upper-case letter, A. . .Z.

Examples: X, R2D2, A Erlang 1 1 1878.
When a variable is declared, it must be bound to a value. For
example,

X = 12.

Once the value of a variable is bound, it cannot be changed.
See also: atoms, patterns.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 13 / 58



Variables – Examples

13> X = 12.
12
14> X = 99. % try to change the value of X.
** exception error: no match of right hand side value 99

15> X = 12.
12 % The value of X is unchanged.
16> X = 12.0.

** exception error: no match of right hand side value 12.0

17> f(X).
ok % The Erlang shell lets you forget, f(), a variable.

% You can’t use f() in .erl files.
18> X = 42.17.
42.17
19> A = B.

* 1: variable ’B’ is unbound
20>

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 14 / 58



Arithmetic Operations

Binary operations:
*, /, div, rem � band � +, - � bor, bxor, bsl, bsr

Unary operations: +, -, bnot
Precedence and associativity:

I rem � band indicates that rem had higher precedence than band.
I Operators separated commas in the list above have the same

precedence.
I The three unary operators have higher precedence than any of the

binary operators.
I All Erlang binary arithmetic operators are left-associative.

Bitwise binary operations:
band: and bnot: not bor: or bxor: exclusive-or
bsl: arithmetic shift left bsr: arithmetic shift right

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 15 / 58



Arithmetic and Types

div and rem are integer division and remainder respectively.
Their operands must be integers, and they produce integer results.
The operands for bit-wise boolean operators must be integers,
and they produce integer results.
/ is floating-point division:

I It’s operands can be any mix of integers or floats.
I The result is always a float.

+, -, and * are addition, subtraction, and multiplication as
expected:

I Their operands can be any mix of integers or floats.
I If both operands are integers, then the result is an integer.
I If one or both operands are floats, then the result is a float.
I If one operand is an integer, and the other is a float.

F The integer value is “promoted” to a float.
F If this causes an overflow, and an error occurs.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 16 / 58



Arithmetic – Examples

20> 17 + 5.
22
21> 17 - 5.
12
22> 17 * 5.
85
23> 17 / 5.
3.4
24> 17 div 5.
3
25> 17 rem 5.
2
26> bnot 17.
-18
27> 17 band 5.
1
28> 17 bor 5.
21

29> 17 bxor 5.
20
30> 17 bsl 5.
544
31> 42 bsr 3.
5
32> bnot 17 bsl 5.
-576
33> bnot (17 bsl 5).
-545
5
34> 17 * -5.0.
-85.0
35> 17 div 5.0.

** exception error: bad argument in
an arithmetic expression

in operator div/2
called as 17 div 5.0

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 17 / 58



Arithmetic – More examples
36> A = m1:fac(100).
933262154439441526816992388562667004907159682643816214
685929638952175999932299156089414639761565182862536979
20827223758251185210916864000000000000000000000000
37> A + 1.
933262154439441526816992388562667004907159682643816214
685929638952175999932299156089414639761565182862536979
20827223758251185210916864000000000000000000000001
38> A + 1.0

** exception error: bad argument in an arithmetic
expression

in operator +/2
called as 933262154439441526816992388
5626670049071596826438162146859296389
5217599993229915608941463976156518286
2536979208272237582511852109168640000
00000000000000000000 + 1.0

39>

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 18 / 58



Atoms

Erlang has a primitive type called an atom.
I An atom is any non-empty sequence of

F letters, a. . .z and A. . . Z,
F digits, 0. . .9, and
F underscores, ,
F where the first character is a lower-case letter, a. . .z.

I Or, any sequence of characters enclosed by single quotes, ’.
I Examples: atom, r2D2, ’3r14|\|6 r00lz’.

Each atom is distinct.
I Handy for “keys” for pattern matching and flags to functions.
I Erlang uses several standard atoms including: true, false, ok.
I Module and function names are atoms.

See also: patterns. variables,

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 19 / 58



Comparisons
Erlang has a the usual set of comparison operators:

I <, =<, ==, /=, >=, >
I Most of these are like their C/C++/Java equivalents.
I =< is “less-than-or-equal-to” and /= is “not-equal-to”.

Erlang has two special operators for comparing integers and
floating point numbers:

I =:= “exactly equal to” – X =:= Y iff X == Y and if X is an integer,
Y is an integer too; and if X is a float, then Y is a float too.

I =/= “exactly not-equal to” – the logical negation of =:=.

Examples:
39> 2 < 3.
true
40> 2 == 2.0.
true
41> 2 < 2.0.
false

42> 2 =:= 2.0.
false
43> 2 =/= 2.0.
true
44> 2.0 =:= 2.0.
true

45> tom == mary.
false
46> tom == 2.
false
47> tom == tom.
true

See also: comparisons with lists or tuples.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 20 / 58



Boolean Expressions
Erlang represents boolean values with the atoms true and
false.
Erlang has the unary boolean operator not.
Erlang has the binary boolean operators: and � or, xor.

I The binary operators always evaluate both operands, even if the
result is determined by the left-operand.

I Boolean operators have higher precedence than comparisons –
use parentheses.

48> (2 < 3) or (0 == 5).
true
49> 2 < 3 or false. % or has higher precedence than <
** exception error: bad argument

in operator or/2
called as 3 or false

50> (2 < 3) or (17 div 5 < 0).
true
51> (2 < 3) and (17 div 5 < 0).
true

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 21 / 58



Short-Circuit Booleans

andalso only evaluates its second operand if its first operand
evaluates to true.
orelse only evaluates its second operand if its first operand
evaluates to false.

52> (2 < 3) or (17.0 div 5 < 0).

** exception error: bad argument in
an arithmetic expression

in operator div/2
called as 17 div 5.0

53> (2 < 3) orelse (17.0 div 5 < 0).
true

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 22 / 58



Lists

Lists are the main data structure in Erlang.
Some simple examples:
54> L1 = [1, 2+3, 4+5*6]. % declare a list by stating it’s elements
[1,5,34]
55> L2 = [0 | L1]. % prepend an element to a list
[0,1,5,34]
56> L3 = [L1, L2, foo]. % lists can be nested
[[1,5,34],[0,1,5,34],foo]
57> L4 = [L1 | L2]. % Prepend L1 as a single element to L2.
[[1,5,34],0,1,5,34]
58> L5 = L1 ++ L2. % ++ denotes list concatenation.
[1,5,34,0,1,5,34]
59> L6 = [L1 | L2 | L3].

* 1: syntax error before: ’|’

See also: list operations, list comparisons, strings, tuples.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 23 / 58



Pattern Matching
Erlang makes extensive use of pattern matching.

I The examples on this slide a very simple because we of the small
Erlang fragment that we have so far.

I More extensive examples will occur on subsequent slides.
Simple example:

60> [Head | Tail] = L1. % L1 declared on slide 23.
[1,5,34]
61> Head.
1
62> Tail.
[5,34]

I Head and Tail were unbound before executing command 60.
I The Erlang run-time finds if there is a way to choose values for
Head and Tail such that the left side of the = operator, [Head,
Tail], matches the right side, L1.

I The Erlang run-time finds such a choice of values and sets Head
and Tail accordingly.

I If there’s no way to make a match, then an error is reported.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 24 / 58



More Matching
The general form for matching is: LeftSide = RightSide.
LeftSide can be an expression of constants and unbound
variables combined using lists and tuples.
RightSide can be an arbitrary expression.
Examples:
63> [1 | X1] = L1.
[1,5,34]
64> X1.
[5,34]
65> [A1, B1, 2*17] = L1. % The compiler replaces 17*2 with 34.
[1,5,34]
66> [1, 5, 2*C1] = L1.

* 1: illegal pattern % But it’s not a general equation solver!
67> [ , B2, ] = L1.
[1,5,34]
68> B2.
5

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 25 / 58



Modules
Erlang code is arranged in modules.

I The code for module foo should be in a file called foo.erl.
I Erlang supports organizing groups of related source files into

packages.
F We won’t use packages here, but. . .
F You can learn about packages at:

http://www.erlang.se/publications/packages.html

An erlang module is a list of attributes followed by a list of function
declarations.
Syntax for attributes: -Name(Value).

I -module(ModuleName).
ModuleName must match the file name without the .erl
extension. ModuleName must be an atom.

I -export([fun1/arity1, fun2/arity2, ...]).
This module exports a function named fun1 that has arity1
arguments. fun1 must be an atom, and arity1 must be a
non-negative integer.

Syntax for functions: see next slide.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 26 / 58

http://www.erlang.se/publications/packages.html


Function Declarations

Syntax:
FunctionName(ArgList1) -> Expr1;
FunctionName(ArgList2) -> Expr2;
...
FunctionName(ArgListN) -> ExprN.

FunctionName is an atom, the name of the function.
ArgList1 is a list of arguments: Arg1, Arg2, ..., ArgK, where
K is the arity of the function.

I If FunctionName is invoked with parameters that match the pattern
of ArgList1,

I then the expression for Expr1 is evaluated to produce the return
value for the function.

I otherwise the other patterns are tried, in order until
F A match is found.
F The last alternative is tried, and fails to match. In this case, and error

is reported.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 27 / 58



Function Declarations (continued)

FunctionName must be the same atom for all alternatives.
Each of the ArgList’s should have be a different pattern, but they
must each have the same number of arguments.
Alternatives are separated by semicolons; the final alternative is
terminated with a period.
Example: factorial (again)

-module(m1).
-export([fac/1]).

fac(0) -> 1;
fac(N) -> N*fac(N-1).

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 28 / 58



Crashing factorial

Consider the factorial function from slide 28.
What happens if I give the command:

69> m1:fac(-1).
% well, I waited a few minutes and then
beam.smp(5555,0xb0250000) malloc: ***

mmap(size=1140850688) failed...

and about 15 more lines of error message as the Erlang
interpretter crashes.
Maybe I shouldn’t do that. ,
The problem was that -1 matched the pattern fac(N).

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 29 / 58



Using a “when” clause

A pattern may be qualified by a when clause.
Example:

fac2(0) -> 1;
fac2(N) when N > 0 -> N*fac2(N-1).

Let’s try it:
70> c(m1).
{ok,m1}
71> m1:fac2(0).
1
72> m1:fac2(3).
6
73> m1:fac2(-1).

** exception error: no function clause matching
m1:fac2(-1)

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 30 / 58



When clauses

Syntax: when guard
Simple version: guard is a boolean-valued expression

I The guard can consist of constants, variables, arithmetic and
boolean operations, and comparisons.

I Erlang is restrictive about what functions you can use.
F built-in functions that have no side-effects.
F some handy ones: length(List), element(N, Tuple),

is integer(X), is list(X), is tuple(X), . . .

More elaborate guards can be written. See
Erlang Language Reference – Expressions→Guard Sequences

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 31 / 58

http://www.erlang.org/doc/reference_manual/expressions.html#id78951


Tuples
Tuples are the other main data-structure in Erlang.
Some simple examples:

74> T1 = {cat, dog, potoroo}.
{cat,dog,potoroo}
75> L6 = [ {cat, 17}, {dog, 42}, {potoroo, 8}].
[{cat,17}, {dog,42}, {potoroo,8}]
76> element(2, T1).
dog
77> T2 = setelement(2, T1, banana).
{cat,banana,potoroo}
78> T1.
{cat,dog,potoroo}

Lists vs. tuples:
I Tuples are typically used for a small number of values of

heterogeneous “types”. The position in the tuple is significant.
I Lists are typically used for an arbitrary number of values of the

same “type”. The position in the list is usually not-so-important (but
we may have sorted lists, etc.).

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 32 / 58



Another example

Let’s make a module for common operations on matrices:
Functions:

I add, mult, transpose
I lu – LU decomposition
I . . .

Matrix representation, a list of lists:

A = [ [1, 2],
[3, 4]

].
≡ A =

[
1 2
3 4

]

I This representation is problematic for some empty matrices.
I For example, A = [[], [], []] is a 3× 0 empty matrix, but
transpose(A), a 0× 3 empty matrix, has no representation.

I We’re just using this as a simple example→
We won’t bother with empty matrices.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 33 / 58



Matrix multiplication

 1 2

3 4

 · [ 7
9

5
−2

11
6

]
=

[
25 1 23
57 7 57

]

The element in the i th row and j th column of the product is the sum
of the element-wise products of

I The elements of the i th row of the left multiplicand and
I the elements of the j th column of the right multiplicand.

This requires that the number of columns of the left multiplicand
must be the same as the number of rows of the right multiplicand.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 34 / 58



Matrix multiplication

 1 2

3 4

 · [ 7
9

5
−2

11
6

]
=

[
25 1 23
57 7 57

]

1 ∗ 7 + 2 ∗ 9
= 7 + 18
= 25

The element in the i th row and j th column of the product is the sum
of the element-wise products of

I The elements of the i th row of the left multiplicand and
I the elements of the j th column of the right multiplicand.

This requires that the number of columns of the left multiplicand
must be the same as the number of rows of the right multiplicand.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 34 / 58



Matrix multiplication

 1 2

3 4

 · [ 7
9

5
−2

11
6

]
=

[
25 1 23
57 7 57

]

1 ∗ 5 + 2 ∗ (−2)
= 5 + −4
= 1

The element in the i th row and j th column of the product is the sum
of the element-wise products of

I The elements of the i th row of the left multiplicand and
I the elements of the j th column of the right multiplicand.

This requires that the number of columns of the left multiplicand
must be the same as the number of rows of the right multiplicand.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 34 / 58



Matrix multiplication

 1 2

3 4

 · [ 7
9

5
−2

11
6

]
=

[
25 1 23
57 7 57

]

1 ∗ 11 + 2 ∗ 6
= 11 + 12
= 23

The element in the i th row and j th column of the product is the sum
of the element-wise products of

I The elements of the i th row of the left multiplicand and
I the elements of the j th column of the right multiplicand.

This requires that the number of columns of the left multiplicand
must be the same as the number of rows of the right multiplicand.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 34 / 58



Matrix multiplication

 1 2

3 4

 · [ 7
9

5
−2

11
6

]
=

[
25 1 23
57 7 57

]

3 ∗ 7 + 4 ∗ 9
= 21 + 36
= 57

The element in the i th row and j th column of the product is the sum
of the element-wise products of

I The elements of the i th row of the left multiplicand and
I the elements of the j th column of the right multiplicand.

This requires that the number of columns of the left multiplicand
must be the same as the number of rows of the right multiplicand.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 34 / 58



Matrix multiplication

 1 2

3 4

 · [ 7
9

5
−2

11
6

]
=

[
25 1 23
57 7 57

]

3 ∗ 5 + 4 ∗ (−2)
= 15 + −8
= 7

The element in the i th row and j th column of the product is the sum
of the element-wise products of

I The elements of the i th row of the left multiplicand and
I the elements of the j th column of the right multiplicand.

This requires that the number of columns of the left multiplicand
must be the same as the number of rows of the right multiplicand.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 34 / 58



Matrix multiplication

 1 2

3 4

 · [ 7
9

5
−2

11
6

]
=

[
25 1 23
57 7 57

]

3 ∗ 11 + 4 ∗ 6
= 33 + 24
= 57

The element in the i th row and j th column of the product is the sum
of the element-wise products of

I The elements of the i th row of the left multiplicand and
I the elements of the j th column of the right multiplicand.

This requires that the number of columns of the left multiplicand
must be the same as the number of rows of the right multiplicand.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 34 / 58



Matrix multiplication

 1 2

3 4

 · [ 7
9

5
−2

11
6

]
=

[
25 1 23
57 7 57

]

The element in the i th row and j th column of the product is the sum
of the element-wise products of

I The elements of the i th row of the left multiplicand and
I the elements of the j th column of the right multiplicand.

This requires that the number of columns of the left multiplicand
must be the same as the number of rows of the right multiplicand.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 34 / 58



Matrix Multiply in Erlang

If P = A ∗B, then P(i , j) is the inner-product of the i th row of A with
the j th column of B.
We represent a matrix as a list of rows (see Slide 33).
Let BT = transpose(B).
P(i , j) is the dot-product of the i th row of A with the j th row of BT .
Code sketch

for i in 1 ...NRows(A) {
let r = row i of A,
for j in 1 ...NRows(BT) {

let c = row j of BT,
let P(i,j) = dot prod(r,c)

}
}

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 35 / 58



The code
mult(A, B) -> mult rows(A, transpose(B)).

% mult rows: for each row of A . . .
mult rows([], BT) -> [];
mult rows([HA | TA], BT) ->

[mult cols(HA, BT) | mult rows(TA, BT)].

% mult cols: for each row of BT . . .
mult cols( HA, []) -> [];
mult cols(HA, [HBT | TBT]) ->

[ dot prod(HA, HBT) | mult cols(HA, TBT)].

% dot prod: compute the dot-product of two, equal-length lists.
dot prod([], []) -> 0;
dot prod([H1 | T1], [H2 | T2]) ->

H1*H2 + dot prod(T1, T2).

This seems way messier than the pseudo-code.
Can we do better?

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 36 / 58



Useful list operations

From module lists:
lists:sum(L) -> the sum of the elements of L.

lists:nth(N,L) -> the Nth element of L.

lists:zip(L1, L2) -> L12.
nth(N, L12) = {nth(N, L1), nth(N, L2)}.
L1 and L2 must be of the same length.
lists:unzip(L12) -> {L1, L2}.
The inverse of zip – converts a list of two-element tuples into a
tuple of two lists.
lists:split(N, L) -> {L1, L2}.
L1 is the first N elements of L, and L2 is the rest.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 37 / 58

http://www.erlang.org/doc/man/lists.html
http://www.erlang.org/doc/man/lists.html#sum-1
http://www.erlang.org/doc/man/lists.html#nth-2
http://www.erlang.org/doc/man/lists.html#zip-2
http://www.erlang.org/doc/man/lists.html#unzip-1
http://www.erlang.org/doc/man/lists.html#split-2


Example, another implementation of dot prod

Strategy:
I Apply lists:zip to lists V1 an V2.
I Write a helper function, dp, to compute the product of each pair in

the zipped list.
I Use lists:sum to compute the total.

In Erlang:
dot prod(V1, V2) -> lists:sum(dp(lists:zip(V1, V2))).
dp([]) -> [];
dp([{X,Y} | T]) -> [X*Y | dp(T)].

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 38 / 58



The map pattern

Many of our examples have the pattern1

f([]) -> [];
f([Head | Tail]) -> [ g(Head) | f(Tail)].

Can we encapsulate this pattern as a function?
Yes!

map(G, []) -> [];
map(G, [Head | Tail]) -> [ G(Head) | map(G, Tail)].

I Note that the parameter G to map is a function.
I We need a way to write an expression whose value is a function.

1As in “Design Patterns” – see Gamma et al.’s book.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 39 / 58

http://en.wikipedia.org/wiki/Design_Patterns


fun expressions

Syntax:
fun(ArgList) -> Expression end

where
I ArgList – the arguments to the function.
I Expression – evaluating this function produces the value for the

function.

Example:
79> Add1 = fun(X) -> X+1 end.
#Fun<erl eval.6.80247286>
80> Add1(2).
3
81>

More elaborate forms are possible. See
Erlang Language Reference – Expressions→Fun Expressions

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 40 / 58

http://www.erlang.org/doc/reference_manual/expressions.html#id77952


dot prod: version 3

dot prod(V1, V2) ->
lists:sum(lists:map(fun({X,Y}) -> X*Y end, lists:zip(V1, V2))).

lists:map is the same as the map function described on
slide 39.
map is an example of a higher-order function:

I It takes a function as an argument.
I Higher order functions can also produce functions as a result.
I Or both – functions as arguments and as the result.

Higher-order functions allow us to encapsulate common patterns
of computation.

I This is a lot of what gives functional programming its
expressiveness.

I Of course, you can do the same things in C, C++, Java, or other
languages.

I But, the expression of higher-order functions is generally more
direct and concise in functional languages.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 41 / 58



More list operations

lists:foldl(Fun, Acc0, List) -> Total
“Accumulate” the values in List.

foldl([Fun, Acc0, [X1, X2, ..., XN]) ->

Fun(XN, Fun(..., Fun(X2, Fun(X1, Acc0))...)).

lists:foldr(Fun, Acc0, List) -> ...
Like foldl but works from the last element of the list back to the
first.
lists:mapfoldl(Fun, Acc0, List1) -> {List2,
Total}
Combines the functionality of Map and foldl. Fun takes two
arguments. Fun(Elem, AccIn) -> {NewElem, AccOut},
where Elem is an element of the list, and AccIn is the
accumulated result so far. NewElem is the value for the result list
corresponding to Elem, and AccOut is the accumulated result
after processing Elem.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 42 / 58

http://www.erlang.org/doc/man/lists.html#foldl-3
http://www.erlang.org/doc/man/lists.html#foldr-3
http://www.erlang.org/doc/man/lists.html#mapfoldl-3


More2 list operations

lists:mapfoldr(Fun, Acc0, List1) -> {List2,
Total}
Like mapfoldl but works from the last element of the list back to
the first.
lists:all(Pred, List) -> bool().
Returns true iff the Pred evaluates to true for every element of
List.
lists:any(Pred, List) -> bool().
Returns true iff the Pred evaluates to true for at least one
element of List.
lists:seq(N1, N2) -> List.
Produces the list [N1, N1+1, ..., N2]. N1 and N2 must be
integers, and N2 must be greater than or equal to N1-1.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 43 / 58

http://www.erlang.org/doc/man/lists.html#mapfoldr-3
http://www.erlang.org/doc/man/lists.html#all-2
http://www.erlang.org/doc/man/lists.html#any-2
http://www.erlang.org/doc/man/lists.html#seq-2


List operations – examples

81> L1 10 = lists:seq(1, 10).
[1,2,3,4,5,6,7,8,9,10]
82> R10 = lists:map(

fun( ) -> random:uniform() end, L1 10).
[0.0923,0.4436,0.7230,0.9458,0.5015,
0.3113,0.5974,0.9157,0.6670,0.4771]

83> math:sqrt(lists:foldl(
fun(X,Sum) -> Sum + X*X end, 0.0, R10)).

1.9593126739777107
84>

random:uniform() returns a pseudo-random float.
math:sqrt(X) is floating point square-root.
To save space, I rounded the values printed by Erlang.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 44 / 58



Block Expressions

I’d like to show how I can use all these functions from lists to
write a shorter, clearer version of matrix multiply.
But, I need to use a comma.
What’s a comma?

I Erlang has block expressions.
I A block expression is a list of expressions separated by commas.
I The expressions are evaluated in program-text order.
I The value of the block expression is the value of the last expression

in the block.
Why use a comma?

I In function bodies, it’s often helpful to be able to declare variables
for intermediate results.

I These declarations are expressions.
I Thus the function body needs more than one expression.
I Block expressions let us write such function bodies.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 45 / 58

http://www.erlang.org/doc/reference_manual/expressions.html#id78654


Handy Hint

Sometimes, when using Erlang interactively, we want to declare a
variable where it Erlang would spew enormous amounts of
“uninteresting” output were it to print the variable’s value.
We can use a comma (i.e. a block expression) to suppress such
verbose output.
Example

84> FAC5 = m1:fac(5).
120.
85> FAC1000 = m1:fac(1000), ok.
ok
86>

BTW, it took about 1.2ms to compute 1000!.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 46 / 58



Matrix Multiply, version 2

mult(A, B) ->
BT = transpose(B),
lists:map(

fun(RA) ->
lists:map(

fun(CB) -> dot prod(RA, CB) end, BT)
end, A).

dot prod(V1, V2) ->
lists:foldl(

fun({X,Y},Sum) -> Sum + X*Y end,
0, lists:zip(V1, V2)).

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 47 / 58



Punctuation
Erlang has lots of punctuation: commas, semicolons, periods, and
end.
It’s easy to get syntax errors or non-working code by using the
wrong punctuation somewhere.
Rules of Erlang punctuation:

I Erlang declarations end with a period: .
I A declaration can consist of several alternatives.

F Alternatives are separated by a semicolon: ;
F Note that many Erlang constructions such as case, fun, if, and

receive can have multiple alternatives as well.
I An declaration or alternative can be a block expression

F Expressions in a block are separated by a comma: ,
F The value of a block expression is the last expression of the block.

I Expressions that begin with a keyword end with end
F case Alternatives end
F fun Alternatives end
F if Alternatives end
F receive Alternatives end

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 48 / 58



Processes – Overview

The built-in function spawn creates a new process.
Each process has a process-id, pid.

I The built-in function self() returns the pid of the calling process.
I spawn returns the pid of the process that it creates.
I The simplest form is spawn(Fun).

F A new process is created.
F The function Fun is invoked with no arguments in that process.

Sending a message.
I Pid ! Message

sends Message to the process with pid Pid.
I Message is any Erlang term (i.e. an arbitrary expression).

Receiving messages:
See next slide.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 49 / 58

http://www.erlang.org/doc/man/erlang.html#spawn-1
http://www.erlang.org/doc/man/erlang.html#self-0


Receiving Messages (short version)

receive
Pattern1 -> Expr1;
Pattern2 -> Expr2;
...
PatternN -> ExprN

end

If there is a pending message for this process that matches one of
the patterns,

I The message is delivered, and the value of the receive
expression is the value of the corresponding Expr.

I Otherwise, the process blocks until such a message is received.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 50 / 58



A simple example

86> MyPid = self().
<0.152.0>
87> spawn(fun() -> MyPid ! "hello world" end).
<0.164.0>
88> receive Msg1 -> Msg1 end.
"hello, world"

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 51 / 58



Message Ordering
Let Process1 and Process2 be two processes.
If Process1 sends messages Msg1 and Msg2 to Process2 in
that order,

I and Process2 executes a receive with a pattern that matches
both messages

I and no other pattern of the receive matches either message,
I then Msg1 will be delivered before Msg2.

No other ordering is guaranteed.
In particular, the triangle inequality is not guaranteed:

I Process1 can send Msg12 to Process2 and then send Msg13 to
Process3.

I Process3 can receive Msg13 from Process1 and then send
Msg32 to Process2.

I Process2 can receive message Msg32 before it receives
message Msg12.

Simple rule: messages can arrive in any order with the exception
that two messages from the same sender to the same receiver will
be delivered in order.
Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 52 / 58



Messages and Pattern Matching

Erlang makes extensive use of messages.
I So, it’s a good idea to use pattern matching to make sure that the

message that you receive is the one that you wanted.
I Example (based on the September 8 lecture (slide 21)):

count3s(L0, N0, NProcs, MyPid) -> % > 1 processor.
...
spawn(fun() ->

MyPid ! {count3s, count3s:count3s(L1)} end),
C2 = count3s(L2, N2, NProcs-1, MyPid),
receive {count3s, C1} -> C1 + C2 end.

F The message of the child gets delivered to us because it is sent to
MyPid.

F The receive gets a message that is the number of 3’s in a sublist
because it is tagged with count3s.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 53 / 58

http://www.ugrad.cs.ubc.ca/~cs448b/2011-1/lecture/09-08.pdf


Receive and Time Outs
The final alternative of a receive can be a time-out (in
milliseconds):

receive
Pattern2 -> Expr2;
...
PatternN -> ExprN
after TimeOut -> ExprTimeOut

end

There are two special values for TimeOut:
I 0 – the time-out is taken immediately if there are no pending

messages that match one of the patterns.
I infinity – the time-out is never taken.

Time-outs should be used carefully:
I They don’t work well with changes in processor or network

technology.

Time-outs are handy for debugging (see next slide).

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 54 / 58



Debugging with Time-Outs (part 1)
Consider:
count3s(L0, N0, NProcs, MyPid) -> % > 1 processor.

...
spawn(fun() -> MyPid !
{cuont3s, count3s:count3s(L1)} end),

C2 = count3s(L2, N2, NProcs-1, MyPid),
receive {count3s, C1} -> C1 + C2 end.

Now, try running it:
89> count3s p1:time it(1000).
% hangs “forever”
∧G
User switch command
--> i
--> c

90>

What went wrong?
I If we do some debugging, we’ll find that the receive statement is

hanging.

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 55 / 58



Debugging with Time-Outs (part2)

Add a time-out

count3s(L0, N0, NProcs, MyPid) -> % > 1 processor.
...
spawn(fun() -> MyPid !
{cuont3s, count3s:count3s(L1)} end),

C2 = count3s(L2, N2, NProcs-1, MyPid),
receive
{count3s, C1} -> C1 + C2
after 500 -> msg dump()

end.

msg dump() ->
io:format("time-out on receive∼n"),
msg dump2().

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 56 / 58



Debugging with Time-Outs (part3)

The rest of the code

msg dump2() ->
receive

X -> io:format("∼w∼n", [X]),
msg dump2()

after 0 -> ’time out for receive’
end.

Now, try running it:
90> count3s p1:time it(1000).
time out for receive
cuont3s, 14 % bug found!
cuont3s, 14 % ’cuont3s’ is misspelled
...
{’time out for receive’,3.5063929999999996}
91>

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 57 / 58



Some features we missed

if expressions
case expressions
List comprehensions – also see the examples at
programming examples (from erlang.org).
exception handling
strings
bit strings and binaries
records
edoc – documentation generator (similar to javadoc).

Mark Greenstreet () Introduction to Erlang CS 448B – Sep. 13&15, 2011 58 / 58

http://www.erlang.org/doc/reference_manual/expressions.html#id75927
http://www.erlang.org/doc/reference_manual/expressions.html#id75991
http://www.erlang.org/doc/reference_manual/expressions.html#id78679
http://www.erlang.org/doc/programming_examples/list_comprehensions.html
http://www.erlang.org/doc/reference_manual/expressions.html#id78264
http://www.erlang.org/doc/reference_manual/data_types.html#id63119
http://www.erlang.org/doc/reference_manual/data_types.html#id55997
http://www.erlang.org/doc/reference_manual/data_types.html#id72848
http://demo.erlang.org/documentation/doc-5.4.8/lib/edoc-0.6.2/doc/html/overview-summary.html

