## CPSC 340: Machine Learning and Data Mining

**Non-Parametric Models** 

# Admin

• Everyone is in off the wait list (congrats, you made it!)

• Auditors: you are in, we can sign forms now

- Assignment 1:
  - You can use 1 late days to submit Monday, 2 for Wednesday.

- Assignment 2 out soon (tonight or tomorrow)
  - Due Wed Jan 31. It is long and harder so start early.

# Admin

Mon, Jan 22

While UBC policy and the Academic Calendar lists Jan 19 as the course change date, students have up to Jan 22 for the following:

- Last day to <u>withdraw from most Winter Term 2</u>
   <u>courses</u> **without** a W standing
- Last day to change the <u>auditing status</u> for Term 2 courses
- Last day to elect <u>Credit/D/Fail</u> grading for most eligible Term 2 courses
- Application deadline for <u>U-Pass exemption</u>

https://students.ubc.ca/enrolment/dates-deadlines

### Last Time: E-mail Spam Filtering

• Want a build a system that filters spam e-mails:

- We formulated as supervised learning:
  - $-(y_i = 1)$  if e-mail 'i' is spam,  $(y_i = 0)$  if e-mail is not spam.
  - $(x_{ij} = 1)$  if word/phrase 'j' is in e-mail 'i',  $(x_{ij} = 0)$  if it is not.

| \$ | Hi | CPSC | 340 | Vicodin | Offer | ••• | Spam? |
|----|----|------|-----|---------|-------|-----|-------|
| 1  | 1  | 0    | 0   | 1       | 0     |     | 1     |
| 0  | 0  | 0    | 0   | 1       | 1     |     | 1     |
| 0  | 1  | 1    | 1   | 0       | 0     |     | 0     |
|    |    |      |     |         |       |     |       |

| Jannie Keenan  | ualberta You are owed \$24,718.11     |
|----------------|---------------------------------------|
| Abby           | ualberta USB Drives with your Logo    |
| Rosemarie Page | Re: New request created with ID: ##62 |
| Shawna Bulger  | RE: New request created with ID: ##63 |
| Gary           | ualberta Cooperation                  |

#### Last Time: Naïve Bayes

• We considered spam filtering methods based on **Bayes rule**:

$$p(y_{i} = "spam") | x_{i1}, x_{i2}, \dots, x_{id}) = p(x_{i1}, x_{i2}, \dots, x_{id}) | y_{i} = "spam") p(y_{i} = "spam") p(y_{i} = "spam") e'stimate$$

$$p(x_{i1}, x_{i2}, \dots, x_{id}) = p(x_{i1}, x_{i2}, \dots, x_{id}) p(y_{i} = y_{id}) p(y_$$

7Casy to

- Naïve Bayes uses practical conditional independence assumption:  $p(hell_0 = 1, vicodin = 0, 340 = 1 | spam) \approx p(hell_0 = 1 | spam) p(vicodin = 0 | spam) p(340 = 1 | spam)$ HARD HARD HARD
- Predict "spam" if p(y<sub>i</sub> = "spam" | x<sub>i1</sub>, x<sub>i2</sub>,..., x<sub>id</sub>) > p(y<sub>i</sub> = "not spam" | x<sub>i1</sub>, x<sub>i2</sub>,..., x<sub>id</sub>).
   We do not need p(x<sub>i1</sub>, x<sub>i2</sub>,..., x<sub>id</sub>) to test this.

#### Naïve Bayes

• Naïve Bayes formally:

$$p(y_{i} | x_{ij} x_{ij} \dots x_{id}) = p(\underbrace{x_{ij} x_{ij} \dots x_{id}}_{p(x_{ij}, x_{ij}, \dots x_{id})} (first use Bayes rule)$$

$$If f(y) \propto g(y)$$

$$it means$$

$$f(y) = kg(y) \text{ for}$$

$$all y_{i} = kg(y) \text{ for}$$

• Post-lecture slides: how to train/test by hand on a simple example.

#### Laplace Smoothing

• Our estimate of p('lactase' = 1 | y<sub>i</sub> = 'spam') is:

- But there is a problem if you have no spam messages with lactase:
  - p('lactase' | 'spam') = 0, so spam messages with lactase automatically get through. Spammers studed using "Bayesian poisoning to get past naive Bayes
- Common fix is Laplace smoothing estimate:

(#spam messages with lactase)+1 (#spam messages)+2

Add 1 to numerator, and add 2 to denominator (for binary features).

Acts like a "fake" spam example that has lactase, and a "fake" spam example that doesn't.

#### Laplace Smoothing

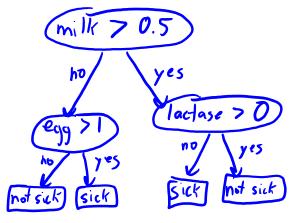
- Laplace smoothing: (#spam messages with lactase) + 1
   (#spam messages) + 2
  - Typically you do this for all features.
    - Helps against overfitting by biasing towards the uniform distribution.
- A common variation is to use a real number  $\beta$  rather than 1.
  - Add 'βk' to denominator if feature has 'k' possible values (so it sums to 1).

$$p(x_{ij}=c|y_i=c|as) \approx \frac{(number of examples in class with x_{ij}=c) + \beta}{(number of examples in class) + \beta K}$$

This is a "maximum a posteriori" (MAP) estimate of the probabiliy. We'll discuss MAP and how to derive this formula later.

#### Decision Trees vs. Naïve Bayes

• Decision trees:



- 1. Sequence of rules based on 1 feature.
- 2. Training: 1 pass over data per depth.
- 3. Greedy splitting as approximation.
- 4. Testing: just look at features in rules.
- 5. New data: might need to change tree.
- 6. Accuracy: good if simple rules based on individual features work ("symptoms").
- 7. Interpretability: easy to see how decisions are made.

• Naïve Bayes:

p(sick | milk, egg, lactase) ~ p(milk lsick) plegg lsick) p(lactase lsick) p(sick)

- 1. Simultaneously combine all features.
- 2. Training: 1 pass over data to count.
- 3. Conditional independence assumption.
- 4. Testing: look at all features.
- 5. New data: just update counts.
- 6. Accuracy: good if features almost independent given label (bag of words).
- 7. Interpretability: can see how each feature influences decision.

#### **Decision Theory**

- Are we equally concerned about "spam" vs. "not spam"?
- True positives, false positives, false negatives, true negatives:

| Predict / True     | True 'spam'    | True 'not spam' |
|--------------------|----------------|-----------------|
| Predict 'spam'     | True Positive  | False Positive  |
| Predict 'not spam' | False Negative | True Negative   |

- The costs of mistakes might be different:
  - Letting a spam message through (false negative) is not a big deal.
  - Filtering a not spam (false positive) message will make users mad.

### **Decision Theory**

• We can give a cost to each scenario, such as:

| Predict / True     | True 'spam' | True 'not spam' |
|--------------------|-------------|-----------------|
| Predict 'spam'     | 0           | 100             |
| Predict 'not spam' | 10          | 0               |

• Instead of most probable label, take  $\hat{y}_i$  minimizing expected cost:

$$\begin{array}{c} & \left[ \mathcal{E} \left[ cost(\hat{y}_{i}, \hat{y}_{i}) \right] \\ \text{expectation of model} \right] \\ & \left[ cost(\hat{y}_{i}, \hat{y}_{i}) \right] \\ \text{with respect to } \hat{y}_{i} \\ \text{if it's really } \hat{y}_{i} \\ \end{array} \right]$$

 Even if "spam" has a higher probability, predicting "spam" might have a expected higher cost.

#### **Decision Theory Example**

| Predict / True     | True 'spam' | True 'not spam' |
|--------------------|-------------|-----------------|
| Predict 'spam'     | 0           | 100             |
| Predict 'not spam' | 10          | 0               |

• Consider a test example we have  $p(\tilde{y}_i = \text{``spam''} | \tilde{x}_i) = 0.6$ , then:

$$\begin{aligned} & \left[ \left[ \cos t \left( \hat{\gamma}_{i} = \text{"spam"}, \tilde{\gamma}_{i} \right) \right] = \rho(\tilde{\gamma}_{i} = \text{"spam"}|\tilde{x}_{i}) \cos t(\tilde{\gamma}_{i} = \text{"spam"}, \tilde{\gamma}_{i} = \text{"spam"}) \\ &+ \rho(\tilde{\gamma}_{i} = \text{"not spam"}|\tilde{x}_{i}) \cos t(\tilde{\gamma}_{i} = \text{"spam"}, \tilde{\gamma}_{i} = \text{"not spam"}) \\ &= (0.6)(0) + (0.4)(100) = 40 \end{aligned}$$

$$F(\cos t(\hat{y}_{i} = not spam, \tilde{y}_{i})) = (0.6)(10) + (0.4)(0) = 6$$

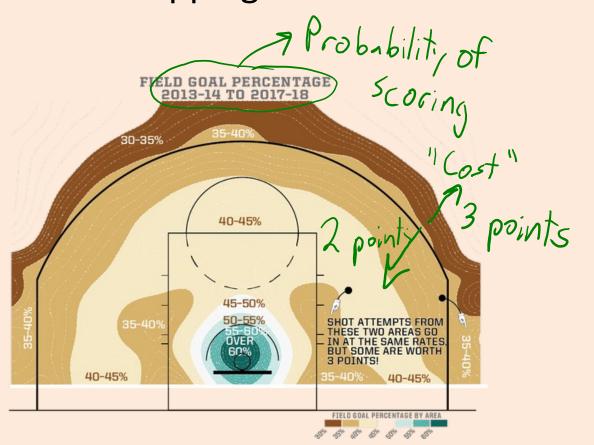
Even though "spam" is more likely, we should predict "not spam".
 With above costs, only classify as "spam" if p(ỹ<sub>i</sub> = "spam" | x̃<sub>i</sub>) ≥ 0.91.

#### **Decision Theory Discussion**

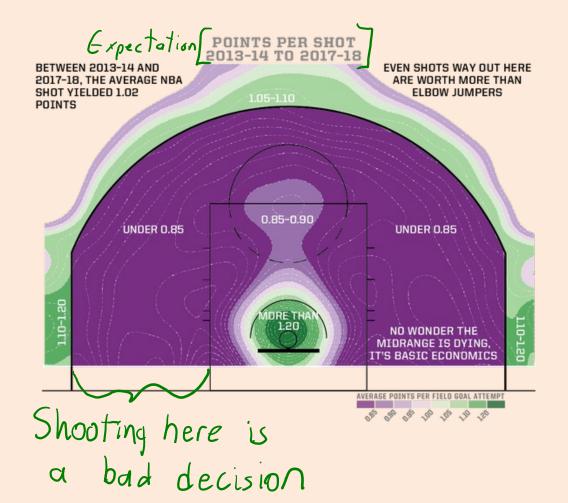
- In other applications, the costs could be different.
  - In cancer screening, maybe false positives are ok, but don't want to have false negatives.
    - <u>Cancer Screening: A Parable of Prediction</u>
- Decision theory and "darts":
  - <u>http://www.datagenetics.com/blog/january12012/index.html</u>
- Decision theory and video poker:
  - <u>http://datagenetics.com/blog/july32019/index.html</u>

#### **Decision Theory and Basketball**

• "How Mapping Shots In The NBA Changed It Forever"

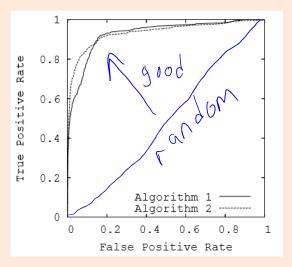


https://fivethirtyeight.com/features/how-mapping-shots-in-the-nba-changed-it-forever/



### **Unbalanced Class Labels**

- A related idea is that of "unbalanced" class labels.
  - If 99% of the e-mails are spam, you can get 99% accuracy by always predicting spam.
- There are a variety of other performance measures available:
  - Weighted classification error.
  - Jaccard similarity.
  - Precision and recall.
  - False positive and false negative rate.
  - ROC curves.



• See the post-lecture bonus slides for additional details.

# Decision Theory and "Debugging by TA"

- Here is one way to write a complicated program:
  - 1. Write the entire function at once.
  - 2. Try it out to "see if it works".
  - 3. Spend hours fiddling with commands, to find magic working combination.
  - 4. Send code to the TA, asking "what is wrong?"
- Decision theory:
  - If you are lucky, Step 2 works and you are done!
  - If you are not lucky, takes way longer than principled coding methods.
  - $E[time("see if it works")] \ge E[time("carefully implement")).$
- The above is also a great way to introduce bugs into your code.
  - So E[bugs("see if it works")] ≥ E[bugs("carefully implementation")).
- And you will not be able to do Step 4 when you graduate.

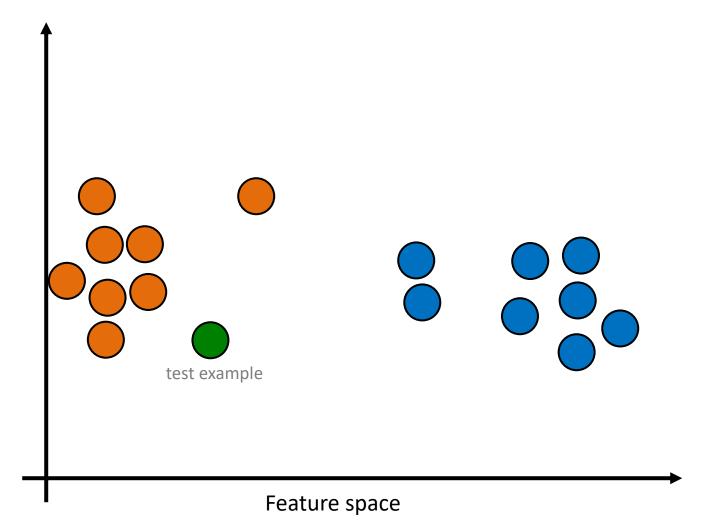
# Digression: Debugging 101

- What strategies could we use to debug an ML implementation?
  - Use "print" statements to see what is happening at each step of the code.
    - Or use a debugger.
  - Develop one or more simple "test cases", were you worked out the result by hand.
    - Maybe one of the functions you are using does not work the way you think it does.
  - Check if the "predict" functionality works correctly on its own.
    - Maybe the training works but the prediction does not.
  - Check if the "training" functionality works correctly on its own.
    - Maybe the prediction works but the training does not.
  - Try the implementation with only one training example or only one feature.
    - Maybe there is an indexing problem, or things are not being aggregated properly.
  - Try the implementation with only two features so you can visualize the decision surface.
    - May be able to see obvious problems.
  - Make a "brute force" implementation to compare to your "fast/clever" implementation.
    - Maybe you made a mistake when trying to be fast/clever.
- With these strategies, you should be able to diagnose locations of problems.

#### Next Topic: Non-Parametric Models

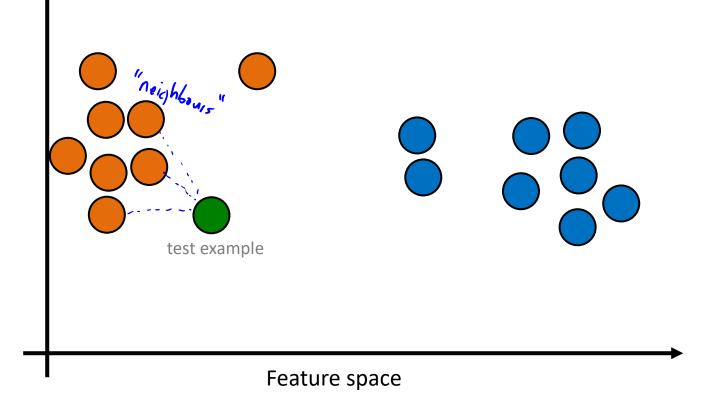
### Geometric Motivation for K-Nearest Neigbours

• Do you think the green example should be orange or blue?

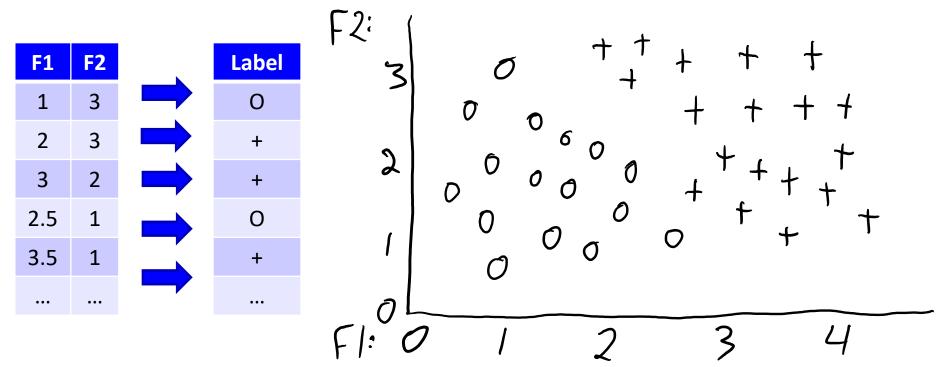


### Geometric Motivation for K-Nearest Neigbours

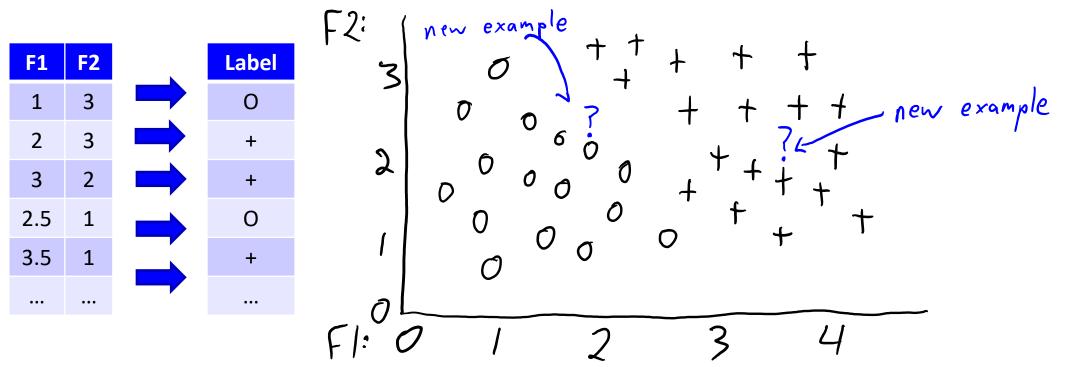
- Do you think the green example should be orange or blue?
  - In the feature space, it is close to examples labeled orange ("neighbours").



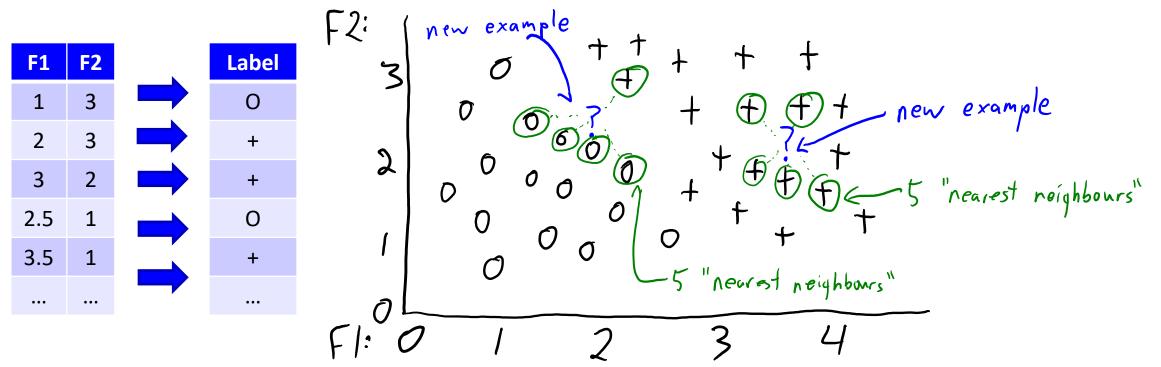
- An old/simple classifier: k-nearest neighbours (KNN).
- To classify an example  $\tilde{x}_i$ :
  - 1. Find the 'k' training examples  $x_i$  that are "nearest" to  $\tilde{x}_i$ .
  - 2. Classify using the most common label of "nearest" training examples.



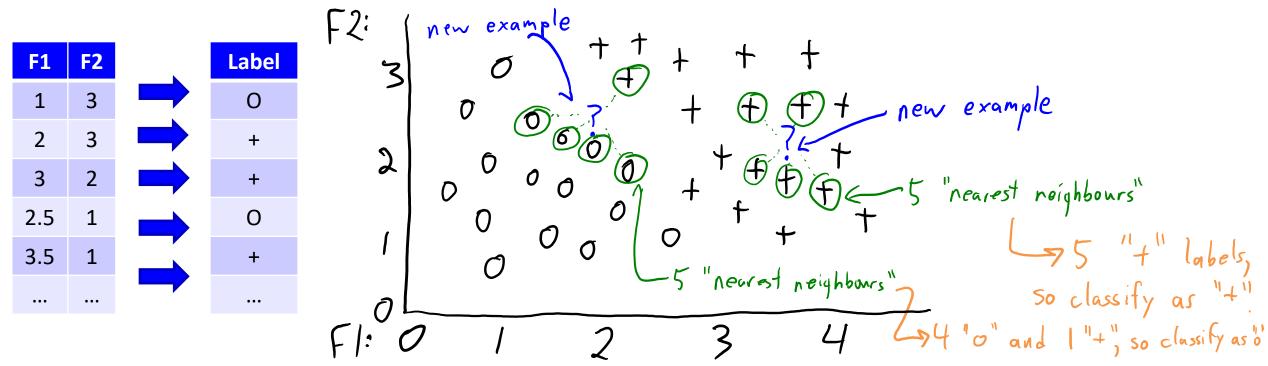
- An old/simple classifier: k-nearest neighbours (KNN).
- To classify an example  $\tilde{x}_i$ :
  - 1. Find the 'k' training examples  $x_i$  that are "nearest" to  $\tilde{x}_i$ .
  - 2. Classify using the most common label of "nearest" training examples.



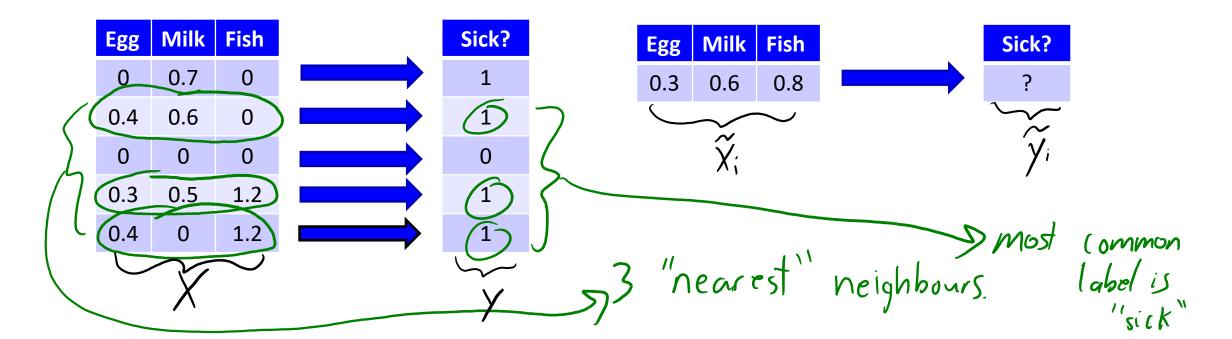
- An old/simple classifier: k-nearest neighbours (KNN).
- To classify an example  $\tilde{x}_i$ :
  - 1. Find the 'k' training examples  $x_i$  that are "nearest" to  $\tilde{x}_i$ .
  - 2. Classify using the most common label of "nearest" training examples.



- An old/simple classifier: k-nearest neighbours (KNN).
- To classify an example  $\tilde{x}_i$ :
  - 1. Find the 'k' training examples  $x_i$  that are "nearest" to  $\tilde{x}_i$ .
  - 2. Classify using the most common label of "nearest" training examples.



- An old/simple classifier: k-nearest neighbours (KNN).
- To classify an example  $\tilde{x}_i$ :
  - 1. Find the 'k' training examples  $x_i$  that are "nearest" to  $\tilde{x}_i$ .
  - 2. Classify using the most common label of "nearest" training examples.



- Assumption:
  - Examples with similar features are likely to have similar labels.
- Seems strong, but all good classifiers basically rely on this assumption.
  - If not true there may be nothing to learn and you are in "no free lunch" territory.
  - Methods just differ in how you define "similarity".
- Most common distance function is **Euclidean distance**:

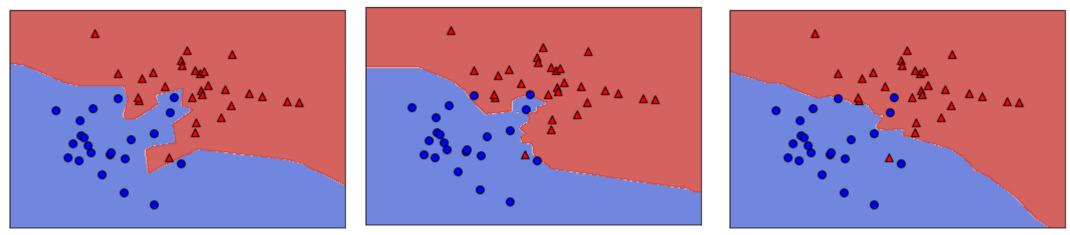
$$|\mathbf{x}_{i} - \widetilde{\mathbf{x}}_{i}^{\prime}|| = \sqrt{\sum_{j=1}^{2} (\mathbf{x}_{ij} - \widetilde{\mathbf{x}}_{ij}^{\prime})^{2}}$$

- $x_i$  is features of training example 'i', and  $\tilde{x}_{\tilde{\iota}}$  is features of test example ' $\tilde{\iota}$ '.
- Costs O(d) to calculate for a pair of examples.

## Effect of 'k' in KNN.

- With large 'k' (hyper-parameter), KNN model will be very simple.
  - With k=n, you just predict the mode of the labels.
  - Model gets more complicated as 'k' decreases.
  - With k=1 it is very sensitive to data (can fit data better but can overfit better too).





- Effect of 'k' on fundamental trade-off:
  - As 'k' grows, training error tends to increase.
  - As 'k' grows, generalization gap tends to decrease.

### **KNN** Implementation

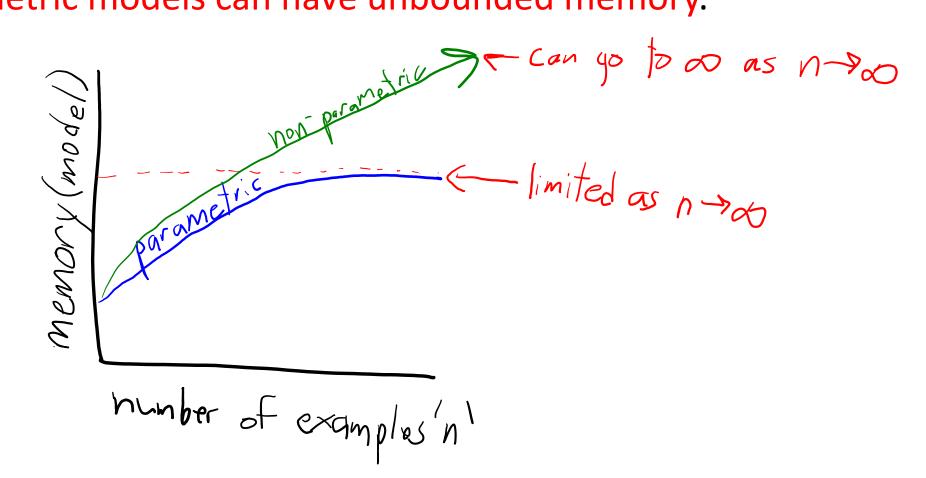
- There is no training phase in KNN ("lazy" learning).
  - You just store the training data.
  - Costs O(1) if you use a pointer.
- But predictions are expensive: O(nd) to classify 1 test example.
  - Need to do an O(d) distance calculation for all 'n' training examples.
  - So prediction time grows with number of training examples.
    - Tons of work on reducing this cost (for example, "condensed nearest neighbor").
- Privacy may be an bigger issue for KNN:
  - If you want to share your model, you need to share the training data.
- And storage is expensive: needs O(nd) memory to store 'X' and 'y'.
  - So memory grows with number of training examples.
  - When storage depends on 'n', we call it a non-parametric model.

#### Parametric vs. Non-Parametric

- Parametric models:
  - Have a bounded number of parameters: trained "model" size is O(1) in terms 'n'.
    - E.g., naïve Bayes just stores counts.
    - E.g., fixed-depth decision tree just stores rules for <u>up to</u> that depth
    - E.g. linear regression with feature selection (number of weights is <u>up to</u> d)
  - You can estimate the fixed parameters more accurately with more data.
  - But eventually more data does not help: model is too simple.
- Non-parametric models:
  - Number of parameters grows with 'n': size of "model" depends on 'n'.
  - Model gets more complicated as you get more data.
    - E.g., KNN stores all the training data, so size of "model" is O(nd).
    - E.g., decision tree whose depth *grows with the number of examples*.

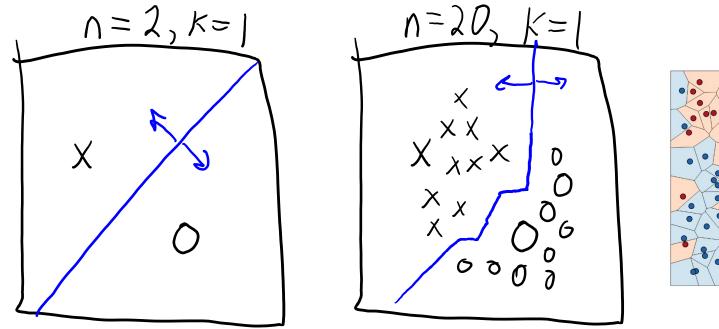
#### Parametric vs. Non-Parametric Models

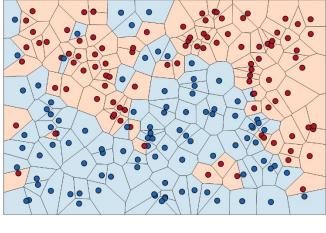
- Parametric models have bounded memory.
- Non-parametric models can have unbounded memory.



### Effect of 'n' in KNN.

• With a small 'n', KNN model will be very simple.





<u>source</u>

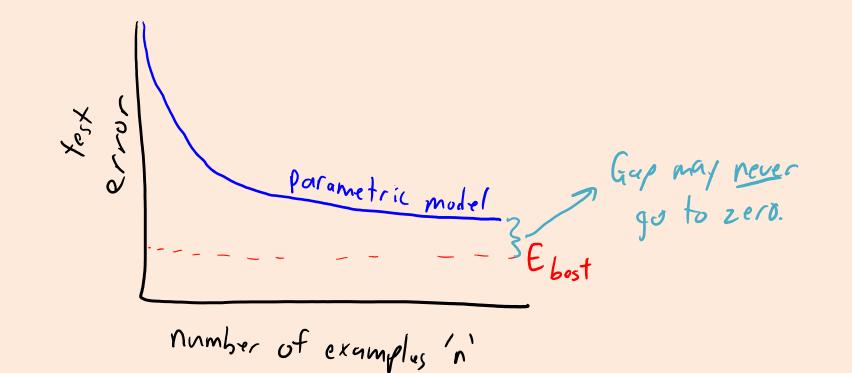
- Model gets more complicated as 'n' increases.
  - Requires more memory, but detects subtle differences between examples.

# Consistency of KNN ('n' going to ' $\infty$ ')

- KNN has appealing consistency properties:
  - As 'n' goes to  $\infty$ , KNN test error is less than twice best possible error.
    - For fixed 'k' and binary labels (under mild assumptions).
- Stone's Theorem: KNN is "universally consistent".
  - If k/n goes to zero and 'k' goes to  $\infty$ , converges to the best possible error.
    - For example, k = log(n).
    - First algorithm shown to have this property.
- Does Stone's Theorem violate the no free lunch theorem?
  - No: it requires a continuity assumption on the labels.
  - Consistency says nothing about finite 'n' (see "<u>Dont Trust Asymptotics</u>").
    - The "speed" at which universal consistency happens is exponential in the dimension 'd'.

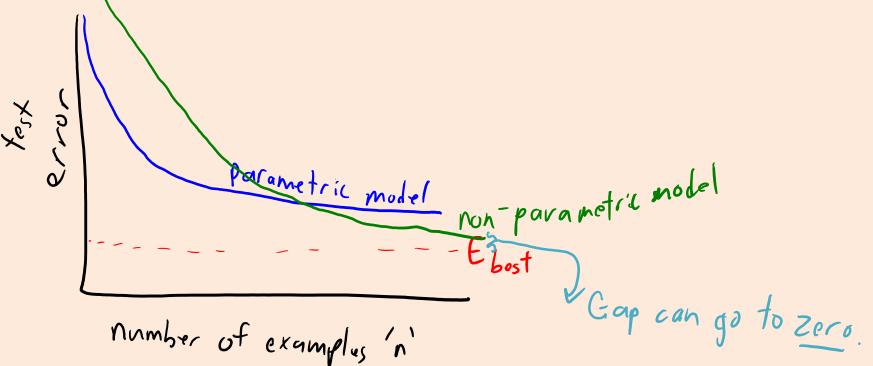
#### Parametric vs. Non-Parametric Models

- With parametric models, there is an accuracy limit.
  - Even with infinite 'n', may not be able to achieve optimal error (E<sub>best</sub>).



#### Parametric vs. Non-Parametric Models

- With parametric models, there is an accuracy limit.
  - Even with infinite 'n', may not be able to achieve optimal error ( $E_{best}$ ).
- Many non-parametric models (like KNN) converge to optimal error.
  - Though may also converge to needing infinite memory.

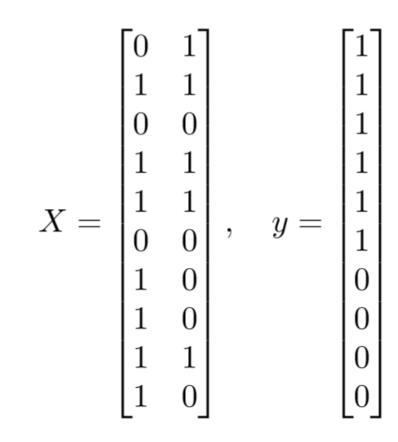


## Summary

- Decision theory allows us to consider costs of predictions.
- K-Nearest Neighbours: use most common label of nearest examples.
  - Often works surprisingly well.
  - Suffers from high prediction and memory cost.
  - Canonical example of a "non-parametric" model.
- Non-parametric models grow with number of training examples.
  - Can have appealing "consistency" properties.
- Next Time:
  - Fighting the fundamental trade-off and Microsoft Kinect.

#### Naïve Bayes Training Phase

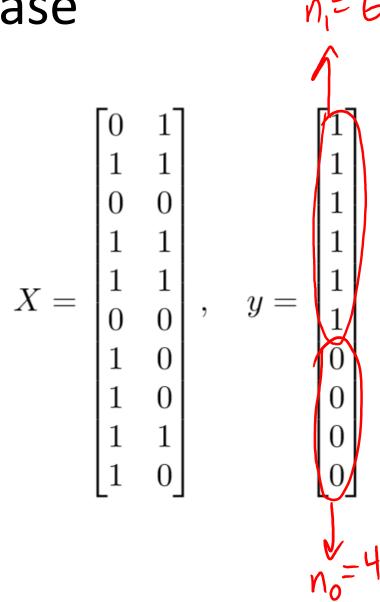
• Training a naïve Bayes model:

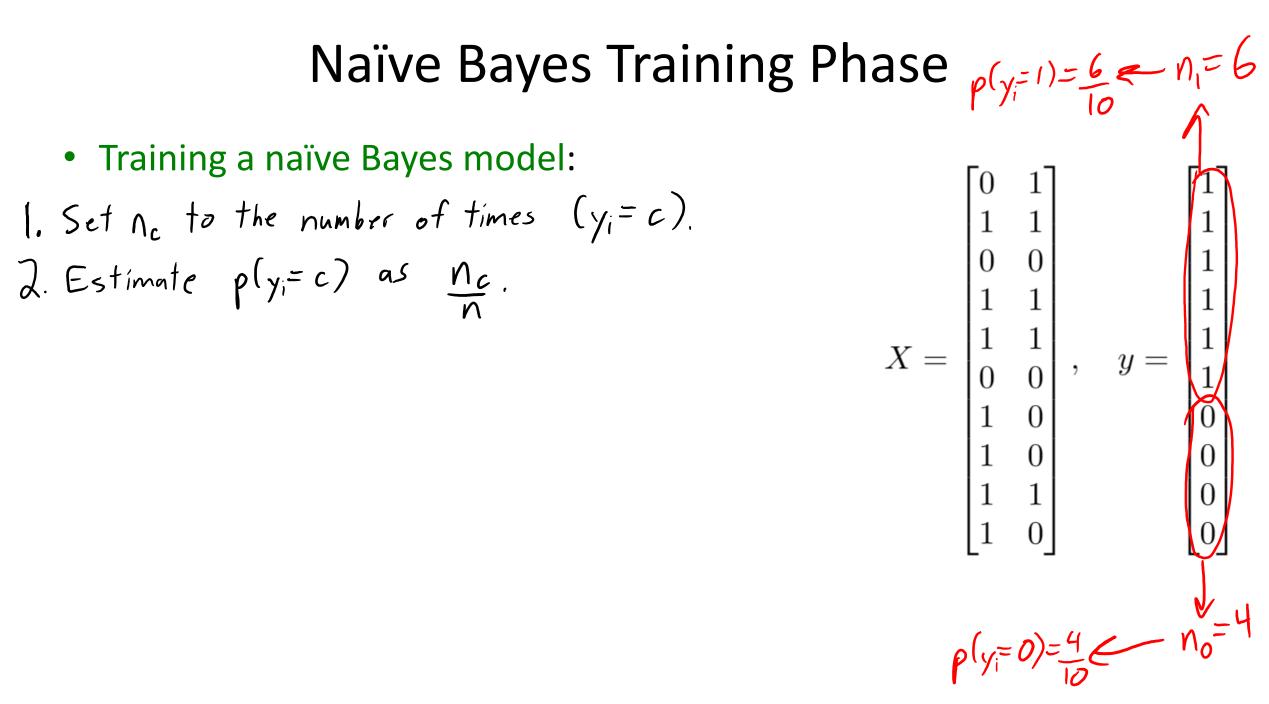


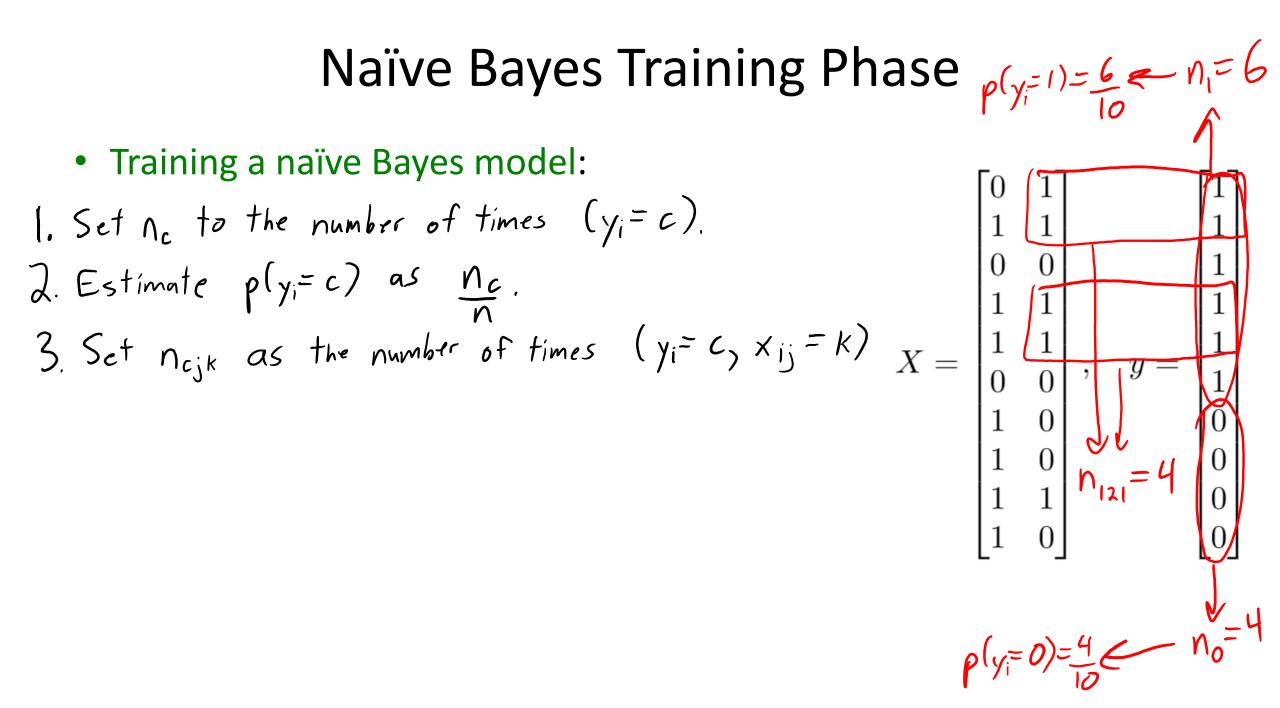
# Naïve Bayes Training Phase

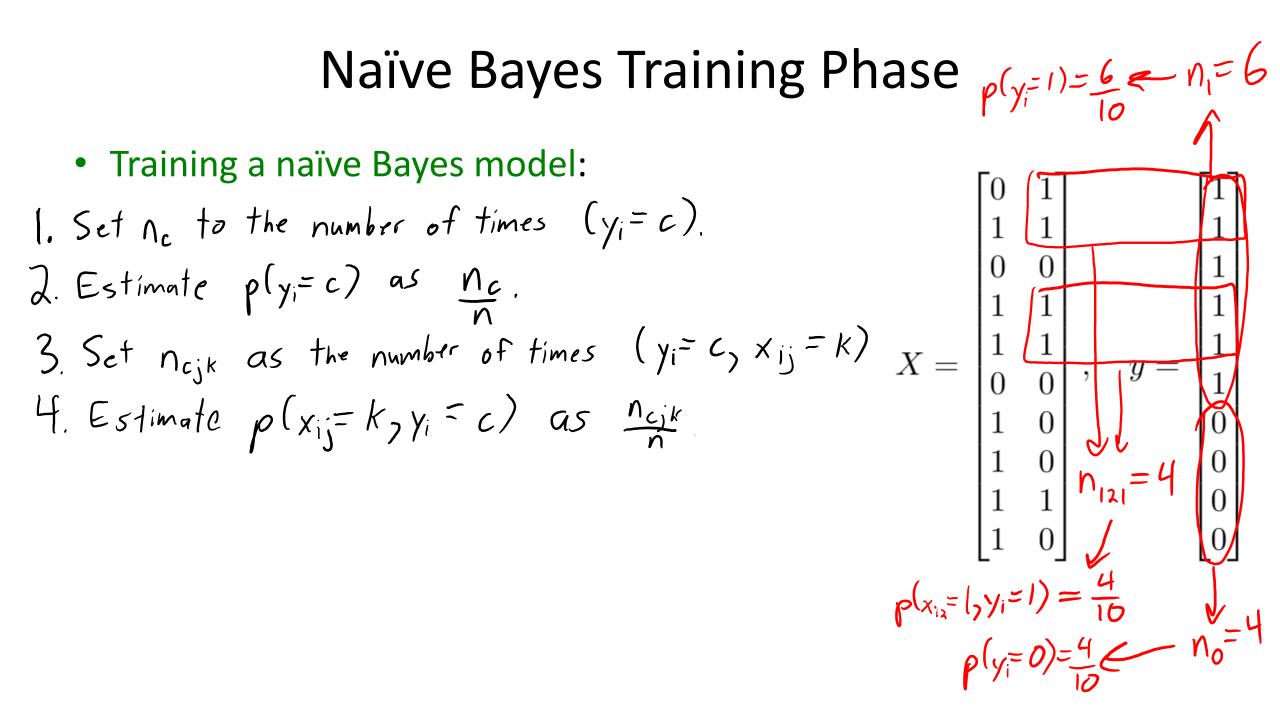
• Training a naïve Bayes model:

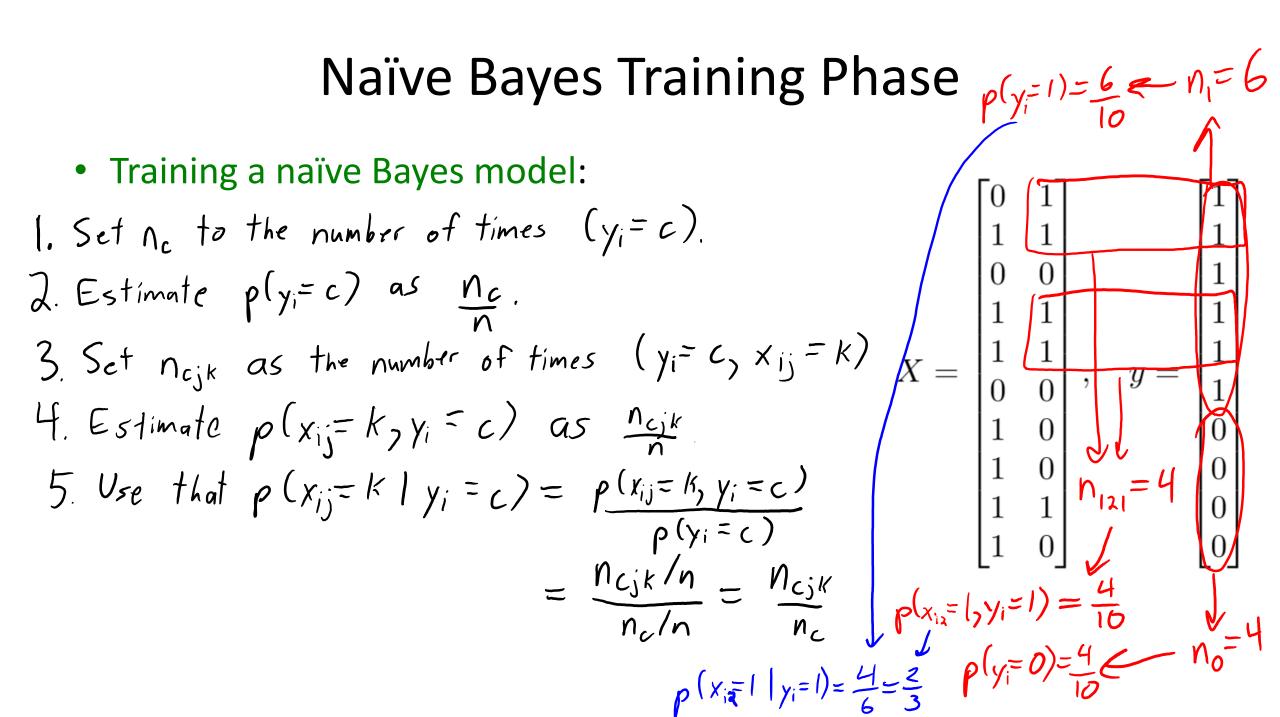
1. Set 
$$n_c$$
 to the number of times  $(y_i = c)$ .











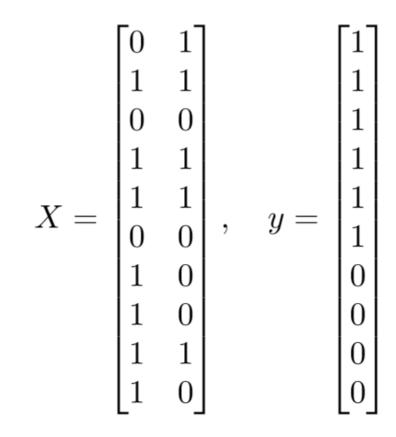
• Prediction in a naïve Bayes model:

Given a test example 
$$\hat{x}_i$$
 we set prediction  $\hat{y}_i$  to the 'c' maximizing  $p(\hat{x}_i | \hat{y}_i = c)$   
Under the name bases assumption we can maximize:

Under the naive Bayes assumption we can maximize.  

$$p(\tilde{y}_i = c \mid \tilde{x}_i) \propto \prod_{j=1}^{d} \left[ p(\tilde{x}_{ij} \mid \tilde{y}_i = c) \right] p(\tilde{y}_i = c)$$

• Prediction in a naïve Bayes model:



• Prediction in a naïve Bayes model:

• Prediction in a naïve Bayes model:

• Prediction in a naïve Bayes model:

$$\begin{array}{l} \text{Consider } \hat{x}_{i} = [1 \ 1] \quad \text{in this data set} \longrightarrow \\ p(\tilde{y}_{i} = 0 \ | \ \tilde{x}_{i}) \propto p(\tilde{x}_{i} = 1 \ | \ \tilde{y}_{i} = 0) \\ = (1) \quad (0.25) \quad (0.4) = 0. \\ (0.25) \quad (0.4) = 0. \\ = (0.5) \quad (0.666...) \quad (0.6) = 0.2 \\ \end{array} \begin{array}{l} \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0$$

### "Proportional to" for Probabilities

• When we say " $p(y) \propto exp(-y^2)$ " for a function 'p', we mean:

$$p(y) = \beta exp(-y^2)$$
 for some constant 'B'.

- However, if 'p' is a probability then it must sum to 1.  $- \text{ If } y \in \{1,2,3,4\} \text{ then } \rho(1) + \rho(2) + \rho(3) + \rho(4) = 1$
- Using this fact, we can find β:

$$\beta e^{(-|^{2})} + \beta e^{(-2^{2})} + \beta e^{(-3^{2})} + \beta e^{(-4^{2})} = |$$

$$\leq = 7 \beta \left[ e^{(-|^{2})} + e^{(-2^{2})} + e^{(-2^{2})} + e^{(-3^{2})} + e^{(-4^{2})} = |$$

$$\leq = 7 \beta = e^{(-1^{2})} + e^{(-2^{2})} + e^{(-3^{2})} + e^{(-4^{2})} = |$$

# Probability of Paying Back a Loan and Ethics

- Article discussing predicting "whether someone will pay back a loan":
  - <u>https://www.thecut.com/2017/05/what-the-words-you-use-in-a-loan-application-reveal.html</u>
- Words that increase probability of paying back the most: — debt-free, lower interest rate, after-tax, minimum payment, graduate.
- Words that decrease probability of paying back the most: – God, promise, will pay, thank you, hospital.
- Article also discusses an important issue: are all these features ethical?
  - Should you deny a loan because of religion or a family member in the hospital?
  - ICBC is limited in the features it is allowed to use for prediction.

# **Avoiding Underflow**

• During the prediction, the probability can underflow:

$$p(y_i = c \mid x_i) \propto \prod_{j=1}^{d} \left[ p(x_{ij} \mid y_i = c) \right] p(y_i = c)$$
  
 $\rightarrow All \text{ these are } < 1 \text{ so the product gets very small.}$ 

 Standard fix is to (equivalently) maximize the logarithm of the probability: Rember that log(ab) = log(a) + log(b) so log(πa<sub>i</sub>) = ξ log(a<sub>i</sub>)
 Since log is <u>monotonic</u> the 'c' maximizing p(y<sub>i</sub>=clx<sub>i</sub>) also maximizes log p(y<sub>i</sub>=clx<sub>i</sub>),
 So maximize log(11/11 [p(x<sub>i</sub>; |y<sub>i</sub>=c)]p(y<sub>i</sub>=clx<sub>i</sub>)] = ξ log(p(x<sub>i</sub>; |y<sub>i</sub>=c)) + log(p(y<sub>i</sub>=c))
 + log(p(y<sub>i</sub>=c))] = ξ log(p(x<sub>i</sub>; |y<sub>i</sub>=c)) + log(p(y<sub>i</sub>=c))
 + log(p(y<sub>i</sub>=c))]
 = ξ log(p(x<sub>i</sub>; |y<sub>i</sub>=c)) + log(p(y<sub>i</sub>=c))
 + log(p(y<sub>i</sub>=c))]
 = ξ log(p(x<sub>i</sub>; |y<sub>i</sub>=c)) + log(p(y<sub>i</sub>=c))
 + log(p(y<sub>i</sub>=c))]
 = ξ log(p(x<sub>i</sub>; |y<sub>i</sub>=c)) + log(p(y<sub>i</sub>=c))
 = ξ log(p(x<sub>i</sub>; |y<sub>i</sub>=c)) + log(p(y<sub>i</sub>=c)))
 = ξ log(p(x<sub>i</sub>; |y<sub>i</sub>=c)) + log(p(y<sub>i</sub>=c))
 = ξ log(p(x<sub>i</sub>; |y<sub>i</sub>=c)) + log(p(y<sub>i</sub>=c))
 = ξ log(p(x<sub>i</sub>; |y<sub>i</sub>=c)))
 = log(x<sub>i</sub>; |y<sub>i</sub>=c))
 = ξ log(p(x<sub>i</sub>; |y<sub>i</sub>=c))
 = log(x<sub>i</sub>; |y<sub>i</sub>=c))
 =

#### Less-Naïve Bayes

- The assumption is very strong, and there are "less naïve" versions:
  - Assume independence of all variables except up to 'k' largest 'j' where j < i.</li>
    - E.g., naïve Bayes has k=0 and with k=2 we would have:

$$\approx \rho(y) \rho(x, ly) \rho(x_2 | x_1, y) \rho(x_3 | x_2, x_1, y) \rho(x_4 | x_3, x_2, y) \cdots \rho(x_d | x_{d-2}, x_{d-1}y)$$

- Fewer independence assumptions so more flexible, but hard to estimate for large 'k'.
- Another practical variation is "tree-augmented" naïve Bayes.

# Computing p(x<sub>i</sub>) under naïve Bayes

- Generative models don't need p(x<sub>i</sub>) to make decisions.
- However, it's easy to calculate under the naïve Bayes assumption:  $p(x_i) = \sum_{i=1}^{l} p(x_{i}, y = c)$  (marginalization rule)  $= \sum_{i=1}^{k} p(x_i | y = c) p(y = c) (product rule)$  $= \sum_{c=1}^{d} \left[ \prod_{j=1}^{d} p(x_{ij} | y = c) \right] p(y=c) \quad (naive Bayes assumption)$ These are the quantilies we compute during training.

## Gaussian Discriminant Analysis

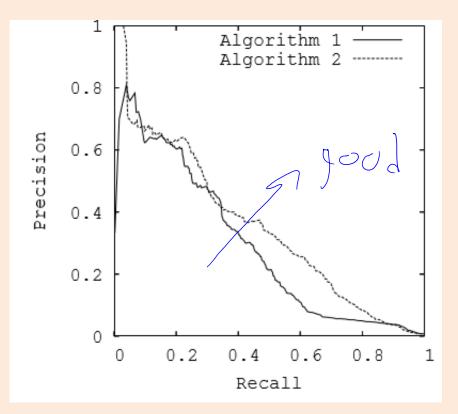
- Classifiers based on Bayes rule are called generative classifier:
  - They often work well when you have tons of features.
  - But they need to know  $p(x_i | y_i)$ , probability of features given the class.
    - How to "generate" features, based on the class label.
- To fit generative models, usually make BIG assumptions:
  - Naïve Bayes (NB) for discrete x<sub>i</sub>:
    - Assume that each variables in x<sub>i</sub> is independent of the others in x<sub>i</sub> given y<sub>i</sub>.
  - Gaussian discriminant analysis (GDA) for continuous x<sub>i</sub>.
    - Assume that  $p(x_i | y_i)$  follows a multivariate normal distribution.
    - If all classes have same covariance, it's called "linear discriminant analysis".

### **Other Performance Measures**

- Classification error might be wrong measure:
  - Use weighted classification error if have different costs.
  - Might want to use things like Jaccard measure: TP/(TP + FP + FN).
- Often, we report precision and recall (want both to be high):
  - Precision: "if I classify as spam, what is the probability it actually is spam?"
    - Precision = TP/(TP + FP).
    - High precision means the filtered messages are likely to really be spam.
  - Recall: "if a message is spam, what is probability it is classified as spam?"
    - Recall = TP/(TP + FN)
    - High recall means that most spam messages are filtered.

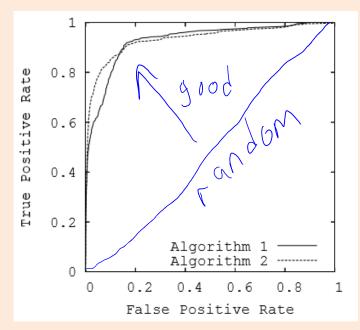
#### **Precision-Recall Curve**

- Consider the rule  $p(y_i = spam' | x_i) > t$ , for threshold 't'.
- Precision-recall (PR) curve plots precision vs. recall as 't' varies.



# **ROC Curve**

- Receiver operating characteristic (ROC) curve:
  - Plot true positive rate (recall) vs. false positive rate (FP/FP+TN).



(negative examples classified as positive)

- Diagonal is random, perfect classifier would be in upper left.
- Sometimes papers report area under curve (AUC).
  - Reflects performance for different possible thresholds on the probability.

# More on Unbalanced Classes

- With unbalanced classes, there are many alternatives to accuracy as a measure of performance:
  - Two common ones are the Jaccard coefficient and the F-score.
- Some machine learning models don't work well with unbalanced data. Some common heuristics to improve performance are:
  - Under-sample the majority class (only take 5% of the spam messages).
    - https://www.jair.org/media/953/live-953-2037-jair.pdf
  - Re-weight the examples in the accuracy measure (multiply training error of getting non-spam messages wrong by 10).
  - Some notes on this issue are <u>here</u>.

# More on Weirdness of High Dimensions

- In high dimensions:
  - Distances become less meaningful:
    - All vectors may have similar distances.
  - Emergence of "hubs" (even with random data):
    - Some datapoints are neighbours to many more points than average.
  - Visualizing high dimensions and sphere-packing

### **Vectorized Distance Calculation**

- To classify 't' test examples based on KNN, cost is O(ndt).
  - Need to compare 'n' training examples to 't' test examples, and computing a distance between two examples costs O(d).
- You can do this slightly faster using fast matrix multiplication:
   Let D be a matrix such that D<sub>ij</sub> contains:

$$||x_i - y_j||^2 = ||x_i||^2 - 2x_i^T x_j + ||x_j||^2$$

where 'i' is a training example and 'j' is a test example.

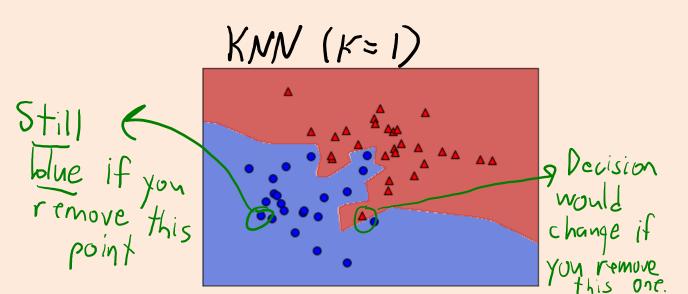
– We can compute D in Julia using:

X1.^2\*ones(d,t) .+ ones(n,d)\*(X2').^2 .- 2X1\*X2'

And you get an extra boost because Julia uses multiple cores.

# **Condensed Nearest Neighbours**

- Disadvantage of KNN is slow prediction time (depending on 'n').
- Condensed nearest neighbours:
  - Identify a set of 'm' "prototype" training examples.
  - Make predictions by using these "prototypes" as the training data.
- Reduces runtime from O(nd) down to O(md).



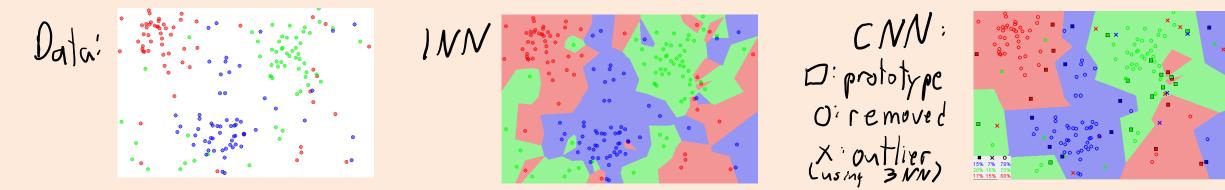
"Condensed version SAME

### **Condensed Nearest Neighbours**

- Classic condensed nearest neighbours:
  - Start with no examples among prototypes.
  - Loop through the non-prototype examples 'i' in some order:
    - Classify x<sub>i</sub> based on the current prototypes.
    - If prediction is not the true y<sub>i</sub>, add it to the prototypes.
  - Repeat the above loop until all examples are classified correctly.
- Some variants first remove points from the original data, if a full-data KNN classifier classifies them incorrectly ("outliers').

# **Condensed Nearest Neighbours**

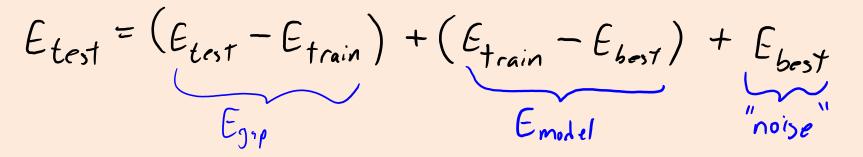
• Classic condensed nearest neighbours:



- Recent work shows that finding optimal compression is NP-hard.
  - An approximation algorithm algorithm was published in 2018:
    - "Near optimal sample compression for nearest neighbors"

# **Refined Fundamental Trade-Off**

- Let E<sub>best</sub> be the irreducible error (lowest possible error for *any* model).
   For example, irreducible error for predicting coin flips is 0.5.
- Some learning theory results use  $E_{best}$  to further decompose  $E_{test}$ :



- E<sub>gap</sub> measures how sensitive we are to training data.
- E<sub>model</sub> measures *if our model is complicated enough to fit data*.
- E<sub>best</sub> measures how low can **any** model make test error.
  - E<sub>best</sub> does not depend on what model you choose.

### **Consistency and Universal Consistency**

- A model is consistent for a particular learning problem if:
  - $E_{test}$  converges to  $E_{best}$  as 'n' goes to infinity, for that particular problem.
- A model is universally consistent for a class of learning problems if:
   E<sub>test</sub> converges to E<sub>best</sub> as 'n' goes to infinity, for all problems in the class.
- Class of learning problems will usually be "all problems satisfying":
  - A continuity assumption on the labels  $y^i$  as a function of  $x^i$ .
    - E.g., if x<sup>i</sup> is close to x<sup>j</sup> then they are likely to receive the same label.
  - A boundedness assumption of the set of x<sup>i</sup>.

### Consistency of KNN (Discrete/Deterministic Case)

- Let's show universal consistency of KNN in a simplified setting.
  - The x<sup>i</sup> and y<sup>i</sup> are binary, and y<sup>i</sup> being a deterministic function of x<sup>i</sup>.
    - Deterministic y<sup>i</sup> implies that E<sub>best</sub> is 0.
- Consider KNN with k=1:
  - After we observe an x<sub>i</sub>, KNN makes right test prediction for that vector.
  - As 'n' goes to  $\infty$ , each feature vectors with non-zero probability is observed.
  - We have  $E_{test} = 0$  once we've seen all feature vectors with non-zero probability.
- Notes:
  - "No free lunch" isn't relevant as 'n' goes to  $\infty$ : we eventually see everything.
    - But there are 2<sup>d</sup> possible feature vectors, so might need a huge number of training examples.
  - It's more complicated if labels aren't deterministic and features are continuous.

# Consistency of Non-Parametric Models

- Universal consistency can be been shown for many models we'll cover:
  - Linear models with polynomial basis.
  - Linear models with Gaussian RBFs.
  - Neural networks with one hidden layer and standard activations.
    - Sigmoid, tanh, ReLU, etc.
- But it's always the non-parametric versions that are consistent:
  - Where size of model is a function of 'n'.
  - Examples:
    - KNN needs to store all 'n' training examples.
    - Degree of polynomial must grow with 'n' (not true for fixed polynomial).
    - Number of hidden units must grow with 'n' (not true for fixed neural network).