CPSC 340: Machine Learning and Data Mining

Non-Parametric Models

Admin

• Everyone is in off the wait list (congrats, you made it!)

• Auditors: you are in, we can sign forms now

- Assignment 1:
 - You can use 1 late days to submit Monday, 2 for Wednesday.

- Assignment 2 out soon (tonight or tomorrow)
 - Due Wed Jan 31. It is long and harder so start early.

Admin

Mon, Jan 22

While UBC policy and the Academic Calendar lists Jan 19 as the course change date, students have up to Jan 22 for the following:

- Last day to <u>withdraw from most Winter Term 2</u>
 <u>courses</u> **without** a W standing
- Last day to change the <u>auditing status</u> for Term 2 courses
- Last day to elect <u>Credit/D/Fail</u> grading for most eligible Term 2 courses
- Application deadline for <u>U-Pass exemption</u>

https://students.ubc.ca/enrolment/dates-deadlines

Last Time: E-mail Spam Filtering

• Want a build a system that filters spam e-mails:

- We formulated as supervised learning:
 - $-(y_i = 1)$ if e-mail 'i' is spam, $(y_i = 0)$ if e-mail is not spam.
 - $(x_{ij} = 1)$ if word/phrase 'j' is in e-mail 'i', $(x_{ij} = 0)$ if it is not.

\$	Hi	CPSC	340	Vicodin	Offer	•••	Spam?
1	1	0	0	1	0		1
0	0	0	0	1	1		1
0	1	1	1	0	0		0

Jannie Keenan	ualberta You are owed \$24,718.11
Abby	ualberta USB Drives with your Logo
Rosemarie Page	Re: New request created with ID: ##62
Shawna Bulger	RE: New request created with ID: ##63
Gary	ualberta Cooperation

Last Time: Naïve Bayes

• We considered spam filtering methods based on **Bayes rule**:

$$p(y_{i} = "spam") | x_{i1}, x_{i2}, \dots, x_{id}) = p(x_{i1}, x_{i2}, \dots, x_{id}) | y_{i} = "spam") p(y_{i} = "spam") p(y_{i} = "spam") e'stimate$$

$$p(x_{i1}, x_{i2}, \dots, x_{id}) = p(x_{i1}, x_{i2}, \dots, x_{id}) p(y_{i} = y_{id}) p(y_$$

7Casy to

- Naïve Bayes uses practical conditional independence assumption: $p(hell_0 = 1, vicodin = 0, 340 = 1 | spam) \approx p(hell_0 = 1 | spam) p(vicodin = 0 | spam) p(340 = 1 | spam)$ HARD HARD HARD
- Predict "spam" if p(y_i = "spam" | x_{i1}, x_{i2},..., x_{id}) > p(y_i = "not spam" | x_{i1}, x_{i2},..., x_{id}).
 We do not need p(x_{i1}, x_{i2},..., x_{id}) to test this.

Naïve Bayes

• Naïve Bayes formally:

$$p(y_{i} | x_{ij} x_{ij} \dots x_{id}) = p(\underbrace{x_{ij} x_{ij} \dots x_{id}}_{p(x_{ij}, x_{ij}, \dots x_{id})} (first use Bayes rule)$$

$$If f(y) \propto g(y)$$

$$it means$$

$$f(y) = kg(y) \text{ for}$$

$$all y_{i} = kg(y) \text{ for}$$

• Post-lecture slides: how to train/test by hand on a simple example.

Laplace Smoothing

• Our estimate of p('lactase' = 1 | y_i = 'spam') is:

- But there is a problem if you have no spam messages with lactase:
 - p('lactase' | 'spam') = 0, so spam messages with lactase automatically get through. Spammers studed using "Bayesian poisoning to get past naive Bayes
- Common fix is Laplace smoothing estimate:

(#spam messages with lactase)+1 (#spam messages)+2

Add 1 to numerator, and add 2 to denominator (for binary features).

Acts like a "fake" spam example that has lactase, and a "fake" spam example that doesn't.

Laplace Smoothing

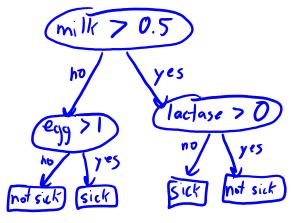
- Laplace smoothing: (#spam messages with lactase) + 1
 (#spam messages) + 2
 - Typically you do this for all features.
 - Helps against overfitting by biasing towards the uniform distribution.
- A common variation is to use a real number β rather than 1.
 - Add 'βk' to denominator if feature has 'k' possible values (so it sums to 1).

$$p(x_{ij}=c|y_i=c|as) \approx \frac{(number of examples in class with x_{ij}=c) + \beta}{(number of examples in class) + \beta K}$$

This is a "maximum a posteriori" (MAP) estimate of the probabiliy. We'll discuss MAP and how to derive this formula later.

Decision Trees vs. Naïve Bayes

• Decision trees:



- 1. Sequence of rules based on 1 feature.
- 2. Training: 1 pass over data per depth.
- 3. Greedy splitting as approximation.
- 4. Testing: just look at features in rules.
- 5. New data: might need to change tree.
- 6. Accuracy: good if simple rules based on individual features work ("symptoms").
- 7. Interpretability: easy to see how decisions are made.

• Naïve Bayes:

p(sick | milk, egg, lactase) ~ p(milk lsick) plegg lsick) p(lactase lsick) p(sick)

- 1. Simultaneously combine all features.
- 2. Training: 1 pass over data to count.
- 3. Conditional independence assumption.
- 4. Testing: look at all features.
- 5. New data: just update counts.
- 6. Accuracy: good if features almost independent given label (bag of words).
- 7. Interpretability: can see how each feature influences decision.

Decision Theory

- Are we equally concerned about "spam" vs. "not spam"?
- True positives, false positives, false negatives, true negatives:

Predict / True	True 'spam'	True 'not spam'
Predict 'spam'	True Positive	False Positive
Predict 'not spam'	False Negative	True Negative

- The costs of mistakes might be different:
 - Letting a spam message through (false negative) is not a big deal.
 - Filtering a not spam (false positive) message will make users mad.

Decision Theory

• We can give a cost to each scenario, such as:

Predict / True	True 'spam'	True 'not spam'
Predict 'spam'	0	100
Predict 'not spam'	10	0

• Instead of most probable label, take \hat{y}_i minimizing expected cost:

$$\begin{array}{c} & \left[\mathcal{E} \left[cost(\hat{y}_{i}, \hat{y}_{i}) \right] \\ \text{expectation of model} \right] \\ & \left[cost(\hat{y}_{i}, \hat{y}_{i}) \right] \\ \text{with respect to } \hat{y}_{i} \\ \text{if it's really } \hat{y}_{i} \\ \end{array} \right]$$

 Even if "spam" has a higher probability, predicting "spam" might have a expected higher cost.

Decision Theory Example

Predict / True	True 'spam'	True 'not spam'
Predict 'spam'	0	100
Predict 'not spam'	10	0

• Consider a test example we have $p(\tilde{y}_i = \text{``spam''} | \tilde{x}_i) = 0.6$, then:

$$\begin{aligned} & \left[\left[\cos t \left(\hat{\gamma}_{i} = \text{"spam"}, \tilde{\gamma}_{i} \right) \right] = \rho(\tilde{\gamma}_{i} = \text{"spam"}|\tilde{x}_{i}) \cos t(\tilde{\gamma}_{i} = \text{"spam"}, \tilde{\gamma}_{i} = \text{"spam"}) \\ &+ \rho(\tilde{\gamma}_{i} = \text{"not spam"}|\tilde{x}_{i}) \cos t(\tilde{\gamma}_{i} = \text{"spam"}, \tilde{\gamma}_{i} = \text{"not spam"}) \\ &= (0.6)(0) + (0.4)(100) = 40 \end{aligned}$$

$$F(\cos t(\hat{y}_{i} = not spam, \tilde{y}_{i})) = (0.6)(10) + (0.4)(0) = 6$$

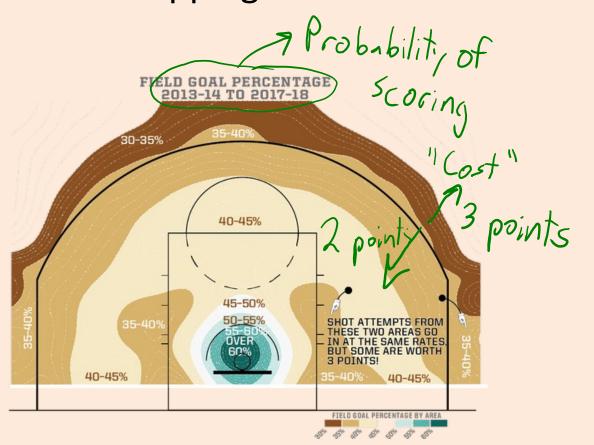
Even though "spam" is more likely, we should predict "not spam".
 With above costs, only classify as "spam" if p(ỹ_i = "spam" | x̃_i) ≥ 0.91.

Decision Theory Discussion

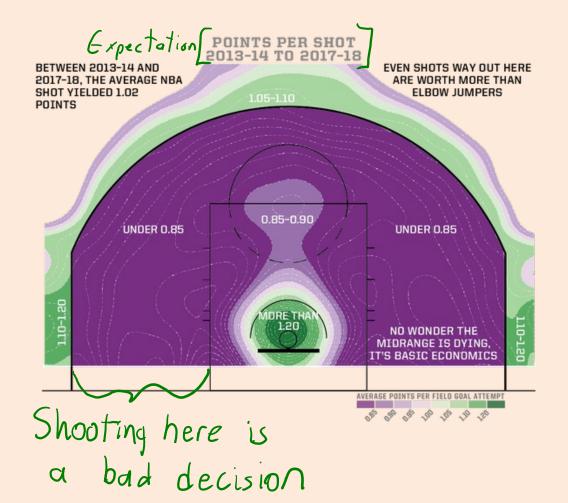
- In other applications, the costs could be different.
 - In cancer screening, maybe false positives are ok, but don't want to have false negatives.
 - <u>Cancer Screening: A Parable of Prediction</u>
- Decision theory and "darts":
 - <u>http://www.datagenetics.com/blog/january12012/index.html</u>
- Decision theory and video poker:
 - <u>http://datagenetics.com/blog/july32019/index.html</u>

Decision Theory and Basketball

• "How Mapping Shots In The NBA Changed It Forever"

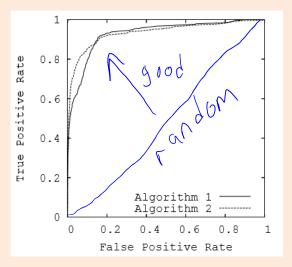


https://fivethirtyeight.com/features/how-mapping-shots-in-the-nba-changed-it-forever/



Unbalanced Class Labels

- A related idea is that of "unbalanced" class labels.
 - If 99% of the e-mails are spam, you can get 99% accuracy by always predicting spam.
- There are a variety of other performance measures available:
 - Weighted classification error.
 - Jaccard similarity.
 - Precision and recall.
 - False positive and false negative rate.
 - ROC curves.



• See the post-lecture bonus slides for additional details.

Decision Theory and "Debugging by TA"

- Here is one way to write a complicated program:
 - 1. Write the entire function at once.
 - 2. Try it out to "see if it works".
 - 3. Spend hours fiddling with commands, to find magic working combination.
 - 4. Send code to the TA, asking "what is wrong?"
- Decision theory:
 - If you are lucky, Step 2 works and you are done!
 - If you are not lucky, takes way longer than principled coding methods.
 - $E[time("see if it works")] \ge E[time("carefully implement")).$
- The above is also a great way to introduce bugs into your code.
 - So E[bugs("see if it works")] ≥ E[bugs("carefully implementation")).
- And you will not be able to do Step 4 when you graduate.

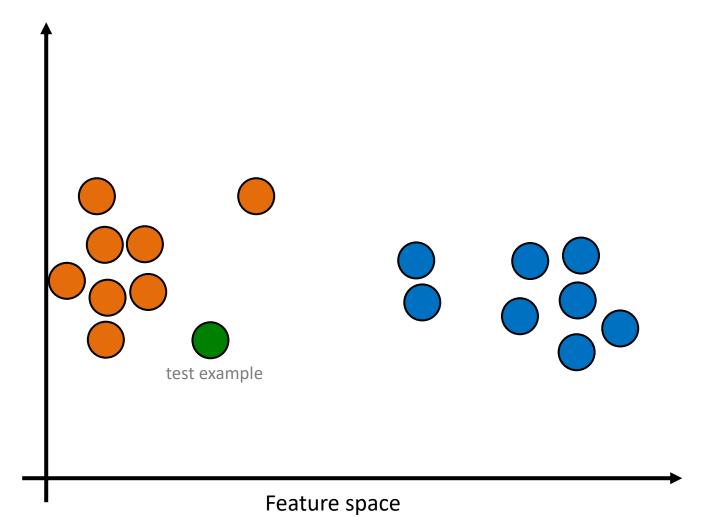
Digression: Debugging 101

- What strategies could we use to debug an ML implementation?
 - Use "print" statements to see what is happening at each step of the code.
 - Or use a debugger.
 - Develop one or more simple "test cases", were you worked out the result by hand.
 - Maybe one of the functions you are using does not work the way you think it does.
 - Check if the "predict" functionality works correctly on its own.
 - Maybe the training works but the prediction does not.
 - Check if the "training" functionality works correctly on its own.
 - Maybe the prediction works but the training does not.
 - Try the implementation with only one training example or only one feature.
 - Maybe there is an indexing problem, or things are not being aggregated properly.
 - Try the implementation with only two features so you can visualize the decision surface.
 - May be able to see obvious problems.
 - Make a "brute force" implementation to compare to your "fast/clever" implementation.
 - Maybe you made a mistake when trying to be fast/clever.
- With these strategies, you should be able to diagnose locations of problems.

Next Topic: Non-Parametric Models

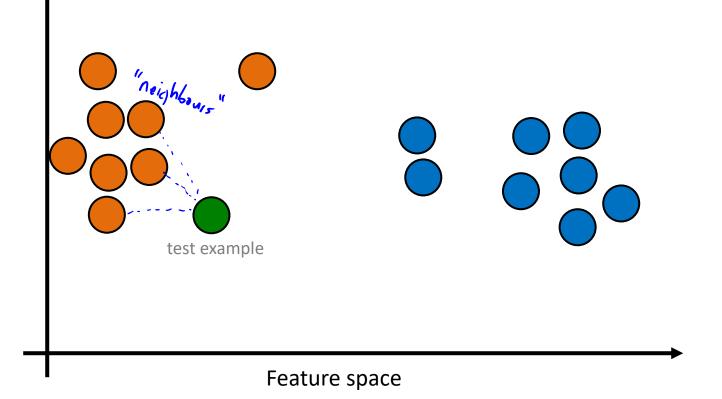
Geometric Motivation for K-Nearest Neigbours

• Do you think the green example should be orange or blue?

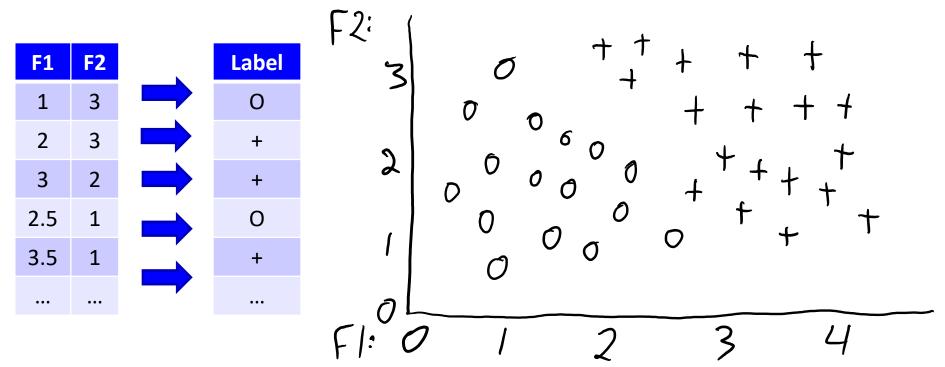


Geometric Motivation for K-Nearest Neigbours

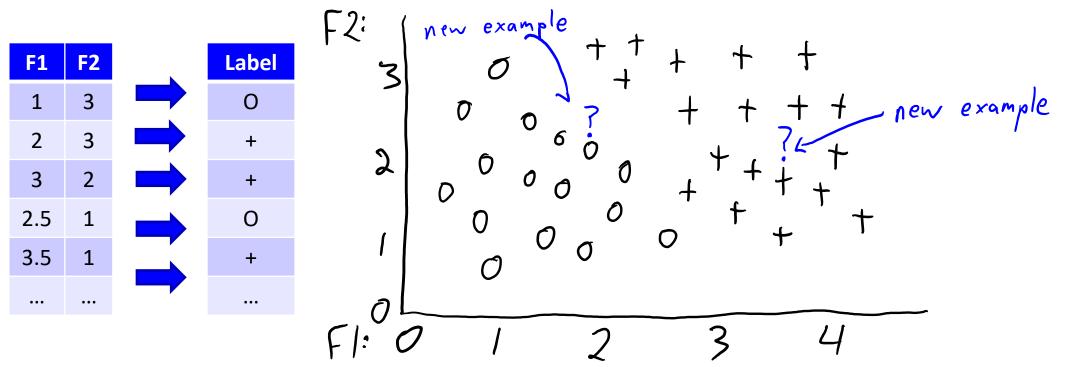
- Do you think the green example should be orange or blue?
 - In the feature space, it is close to examples labeled orange ("neighbours").



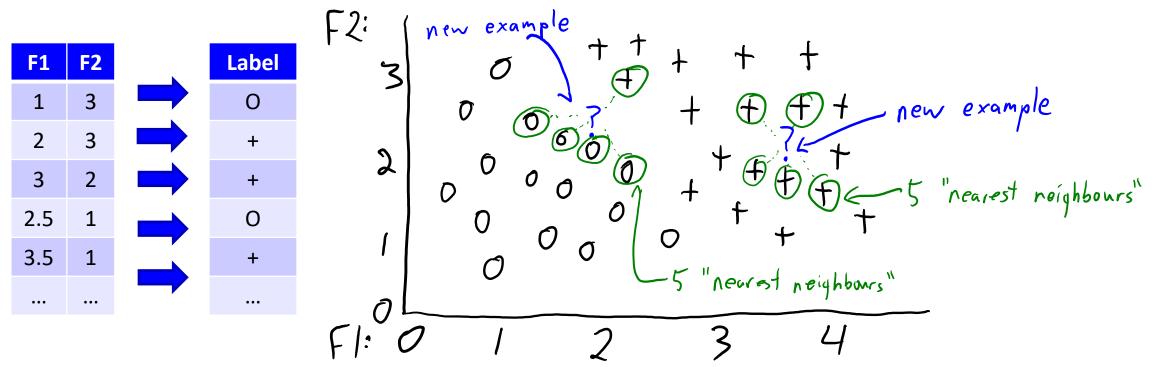
- An old/simple classifier: k-nearest neighbours (KNN).
- To classify an example \tilde{x}_i :
 - 1. Find the 'k' training examples x_i that are "nearest" to \tilde{x}_i .
 - 2. Classify using the most common label of "nearest" training examples.



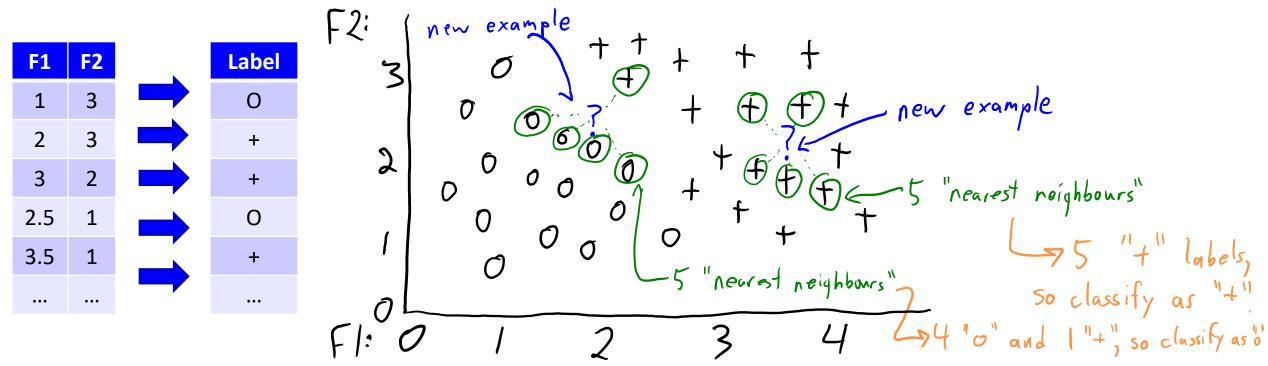
- An old/simple classifier: k-nearest neighbours (KNN).
- To classify an example \tilde{x}_i :
 - 1. Find the 'k' training examples x_i that are "nearest" to \tilde{x}_i .
 - 2. Classify using the most common label of "nearest" training examples.



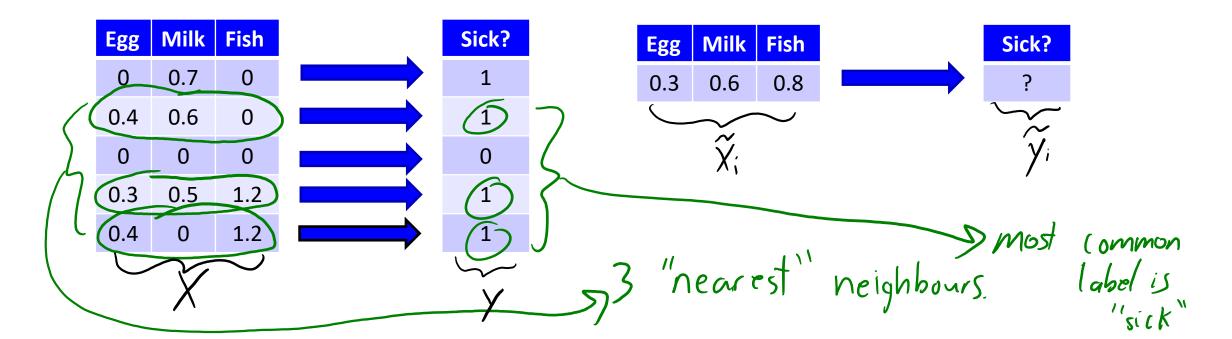
- An old/simple classifier: k-nearest neighbours (KNN).
- To classify an example \tilde{x}_i :
 - 1. Find the 'k' training examples x_i that are "nearest" to \tilde{x}_i .
 - 2. Classify using the most common label of "nearest" training examples.



- An old/simple classifier: k-nearest neighbours (KNN).
- To classify an example \tilde{x}_i :
 - 1. Find the 'k' training examples x_i that are "nearest" to \tilde{x}_i .
 - 2. Classify using the most common label of "nearest" training examples.



- An old/simple classifier: k-nearest neighbours (KNN).
- To classify an example \tilde{x}_i :
 - 1. Find the 'k' training examples x_i that are "nearest" to \tilde{x}_i .
 - 2. Classify using the most common label of "nearest" training examples.



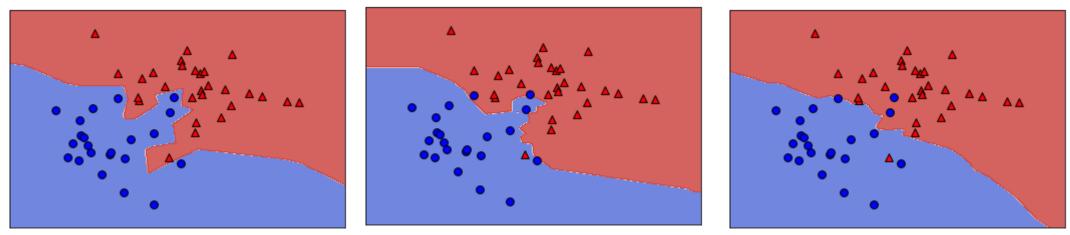
- Assumption:
 - Examples with similar features are likely to have similar labels.
- Seems strong, but all good classifiers basically rely on this assumption.
 - If not true there may be nothing to learn and you are in "no free lunch" territory.
 - Methods just differ in how you define "similarity".
- Most common distance function is **Euclidean distance**:

$$|\mathbf{x}_{i} - \widetilde{\mathbf{x}}_{i}^{\prime}|| = \sqrt{\sum_{j=1}^{2} (\mathbf{x}_{ij} - \widetilde{\mathbf{x}}_{ij}^{\prime})^{2}}$$

- x_i is features of training example 'i', and $\tilde{x}_{\tilde{\iota}}$ is features of test example ' $\tilde{\iota}$ '.
- Costs O(d) to calculate for a pair of examples.

Effect of 'k' in KNN.

- With large 'k' (hyper-parameter), KNN model will be very simple.
 - With k=n, you just predict the mode of the labels.
 - Model gets more complicated as 'k' decreases.
 - With k=1 it is very sensitive to data (can fit data better but can overfit better too).



- Effect of 'k' on fundamental trade-off:
 - As 'k' grows, training error tends to increase.
 - As 'k' grows, generalization gap tends to decrease.

KNN Implementation

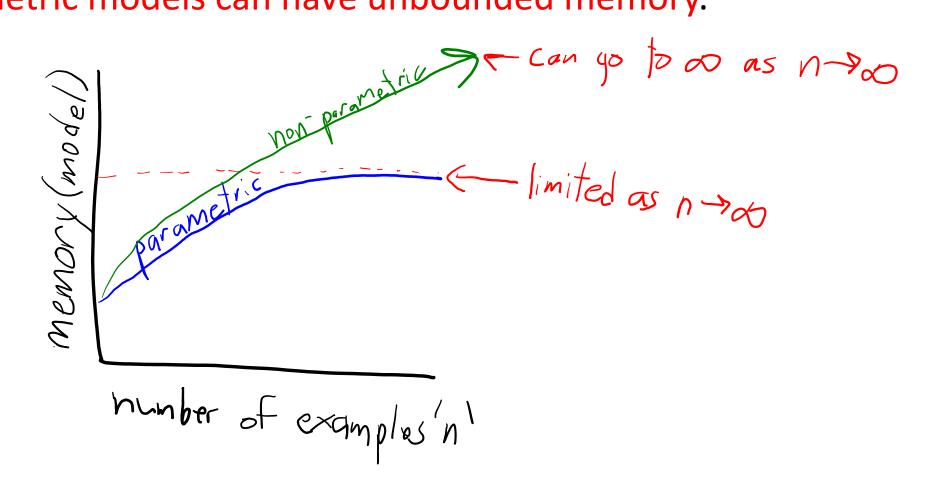
- There is no training phase in KNN ("lazy" learning).
 - You just store the training data.
 - Costs O(1) if you use a pointer.
- But predictions are expensive: O(nd) to classify 1 test example.
 - Need to do an O(d) distance calculation for all 'n' training examples.
 - So prediction time grows with number of training examples.
 - Tons of work on reducing this cost (for example, "condensed nearest neighbor").
- Privacy may be an bigger issue for KNN:
 - If you want to share your model, you need to share the training data.
- And storage is expensive: needs O(nd) memory to store 'X' and 'y'.
 - So memory grows with number of training examples.
 - When storage depends on 'n', we call it a non-parametric model.

Parametric vs. Non-Parametric

- Parametric models:
 - Have a bounded number of parameters: trained "model" size is O(1) in terms 'n'.
 - E.g., naïve Bayes just stores counts.
 - E.g., fixed-depth decision tree just stores rules for <u>up to</u> that depth
 - E.g. linear regression with feature selection (number of weights is <u>up to</u> d)
 - You can estimate the fixed parameters more accurately with more data.
 - But eventually more data does not help: model is too simple.
- Non-parametric models:
 - Number of parameters grows with 'n': size of "model" depends on 'n'.
 - Model gets more complicated as you get more data.
 - E.g., KNN stores all the training data, so size of "model" is O(nd).
 - E.g., decision tree whose depth *grows with the number of examples*.

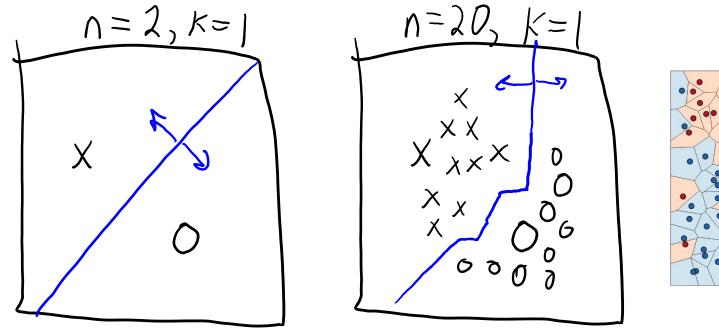
Parametric vs. Non-Parametric Models

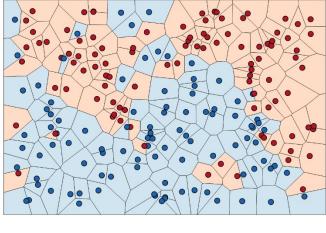
- Parametric models have bounded memory.
- Non-parametric models can have unbounded memory.



Effect of 'n' in KNN.

• With a small 'n', KNN model will be very simple.





<u>source</u>

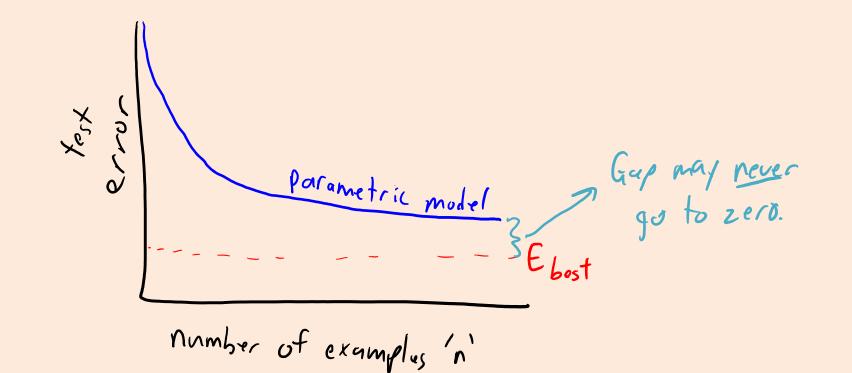
- Model gets more complicated as 'n' increases.
 - Requires more memory, but detects subtle differences between examples.

Consistency of KNN ('n' going to ' ∞ ')

- KNN has appealing consistency properties:
 - As 'n' goes to ∞ , KNN test error is less than twice best possible error.
 - For fixed 'k' and binary labels (under mild assumptions).
- Stone's Theorem: KNN is "universally consistent".
 - If k/n goes to zero and 'k' goes to ∞ , converges to the best possible error.
 - For example, k = log(n).
 - First algorithm shown to have this property.
- Does Stone's Theorem violate the no free lunch theorem?
 - No: it requires a continuity assumption on the labels.
 - Consistency says nothing about finite 'n' (see "<u>Dont Trust Asymptotics</u>").
 - The "speed" at which universal consistency happens is exponential in the dimension 'd'.

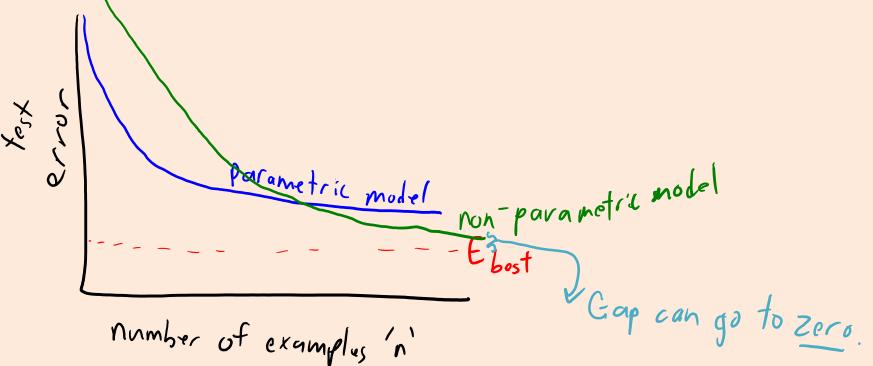
Parametric vs. Non-Parametric Models

- With parametric models, there is an accuracy limit.
 - Even with infinite 'n', may not be able to achieve optimal error (E_{best}).



Parametric vs. Non-Parametric Models

- With parametric models, there is an accuracy limit.
 - Even with infinite 'n', may not be able to achieve optimal error (E_{best}).
- Many non-parametric models (like KNN) converge to optimal error.
 - Though may also converge to needing infinite memory.

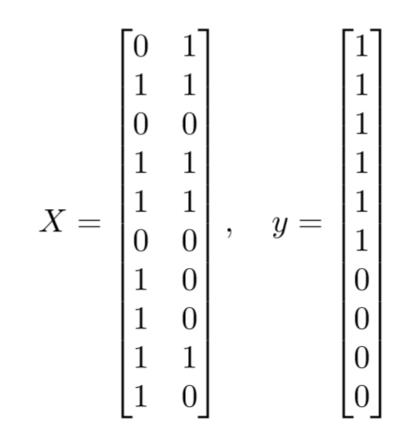


Summary

- Decision theory allows us to consider costs of predictions.
- K-Nearest Neighbours: use most common label of nearest examples.
 - Often works surprisingly well.
 - Suffers from high prediction and memory cost.
 - Canonical example of a "non-parametric" model.
- Non-parametric models grow with number of training examples.
 - Can have appealing "consistency" properties.
- Next Time:
 - Fighting the fundamental trade-off and Microsoft Kinect.

Naïve Bayes Training Phase

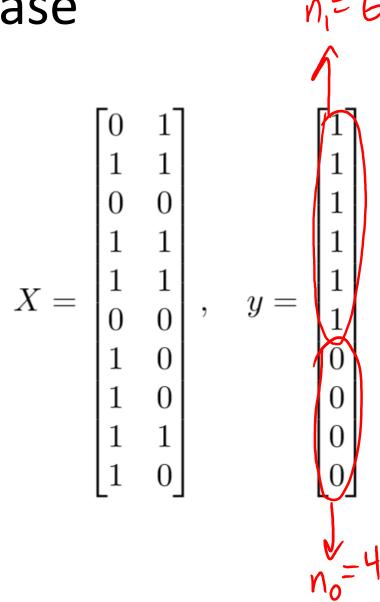
• Training a naïve Bayes model:

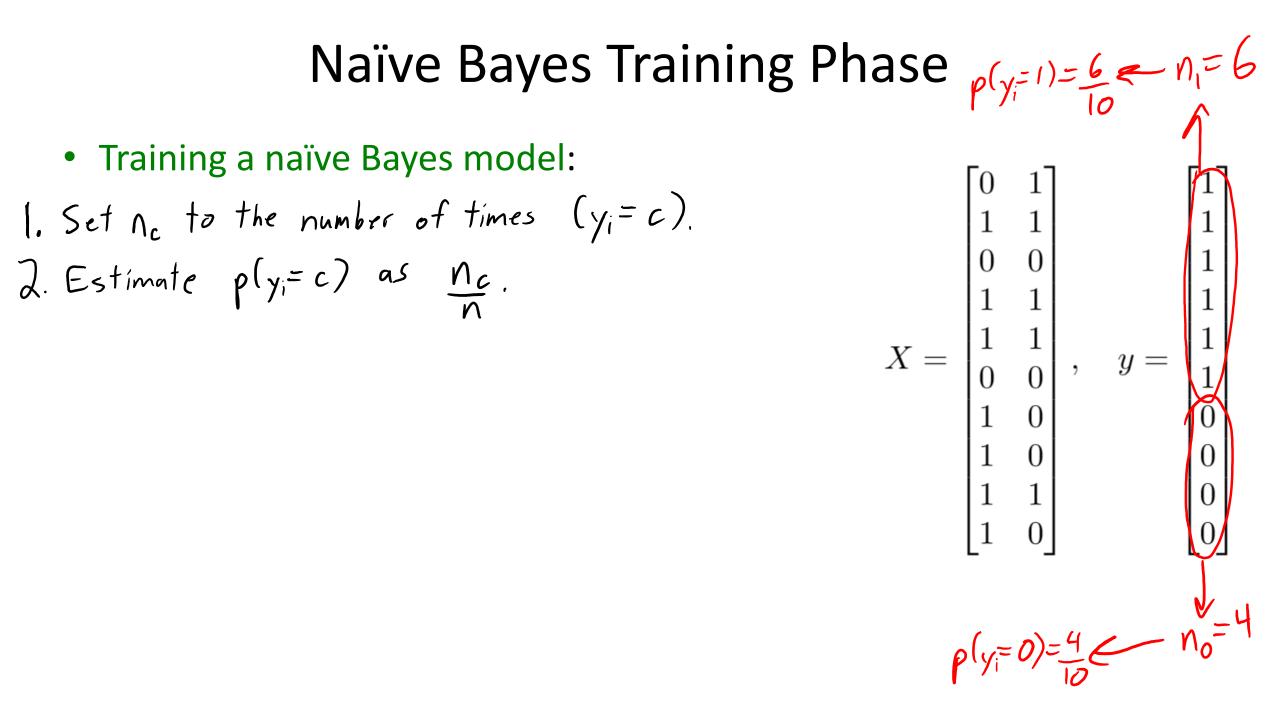


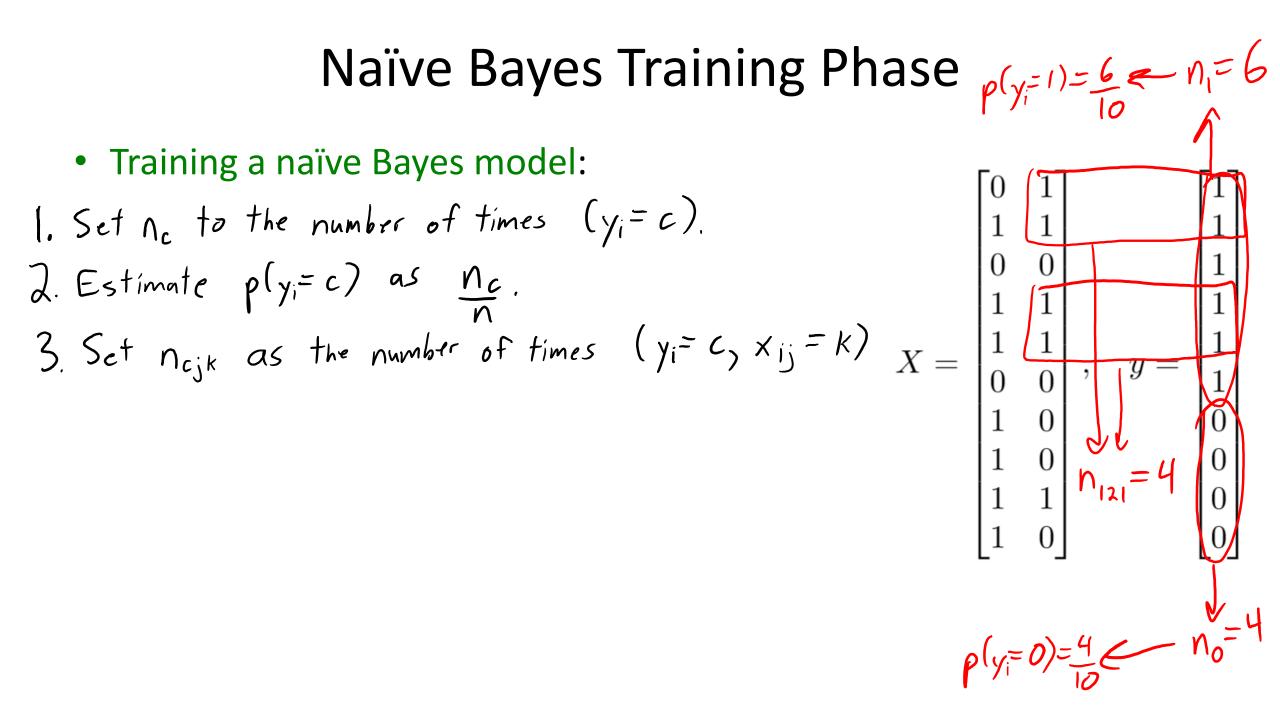
Naïve Bayes Training Phase

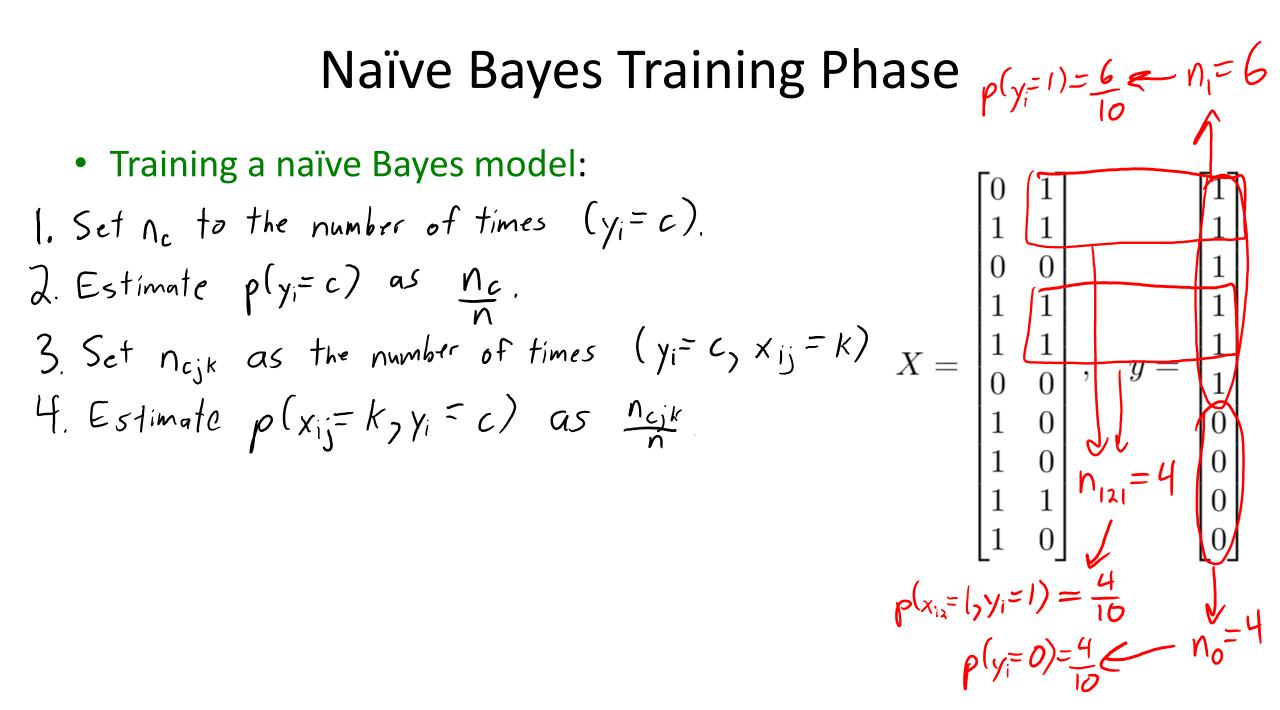
• Training a naïve Bayes model:

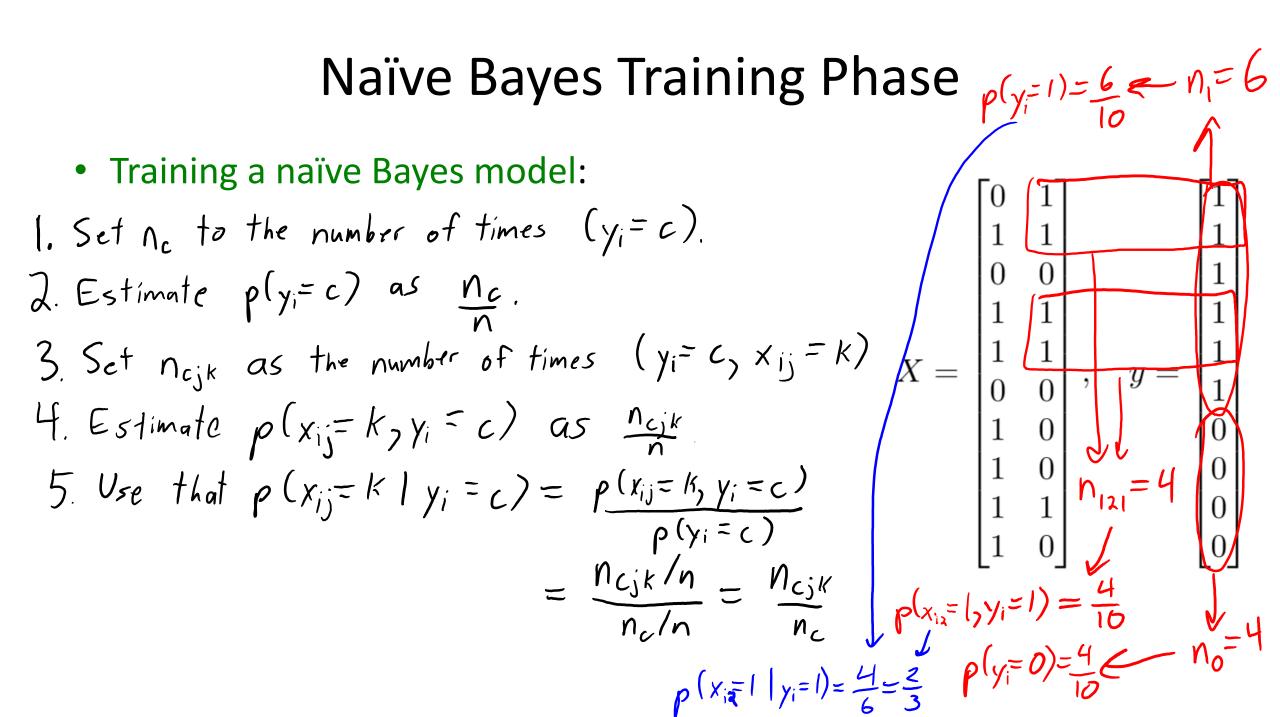
1. Set
$$n_c$$
 to the number of times $(y_i = c)$.











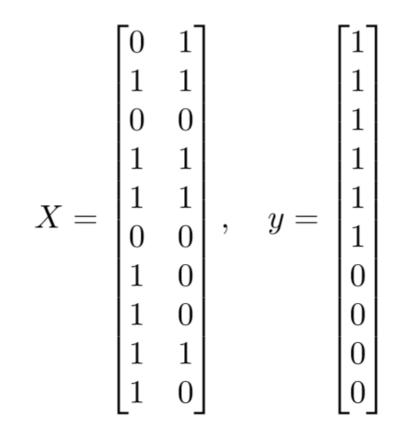
• Prediction in a naïve Bayes model:

Given a test example
$$\hat{x}_i$$
 we set prediction \hat{y}_i to the 'c' maximizing $p(\hat{x}_i | \hat{y}_i = c)$
Under the name bases assumption we can maximize:

Under the naive Bayes assumption we can maximize.

$$p(\tilde{y}_i = c \mid \tilde{x}_i) \propto \prod_{j=1}^{d} \left[p(\tilde{x}_{ij} \mid \tilde{y}_i = c) \right] p(\tilde{y}_i = c)$$

• Prediction in a naïve Bayes model:



• Prediction in a naïve Bayes model:

• Prediction in a naïve Bayes model:

• Prediction in a naïve Bayes model:

$$\begin{array}{l} \text{Consider } \hat{x}_{i} = [1 \ 1] \quad \text{in this data set} \longrightarrow \\ p(\tilde{y}_{i} = 0 \ | \ \tilde{x}_{i}) \propto p(\tilde{x}_{i} = 1 \ | \ \tilde{y}_{i} = 0) \\ = (1) \quad (0.25) \quad (0.4) = 0. \\ (0.25) \quad (0.4) = 0. \\ = (0.5) \quad (0.666...) \quad (0.6) = 0.2 \\ \end{array} \begin{array}{l} \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 0 & 0 \\ 1 & 0$$

"Proportional to" for Probabilities

• When we say " $p(y) \propto exp(-y^2)$ " for a function 'p', we mean:

$$p(y) = \beta exp(-y^2)$$
 for some constant 'B'.

- However, if 'p' is a probability then it must sum to 1. $- \text{ If } y \in \{1,2,3,4\} \text{ then } \rho(1) + \rho(2) + \rho(3) + \rho(4) = 1$
- Using this fact, we can find β:

$$\beta e^{(-|^{2})} + \beta e^{(-2^{2})} + \beta e^{(-3^{2})} + \beta e^{(-4^{2})} = |$$

$$\leq = 7 \beta \left[e^{(-|^{2})} + e^{(-2^{2})} + e^{(-2^{2})} + e^{(-3^{2})} + e^{(-4^{2})} = |$$

$$\leq = 7 \beta = e^{(-1^{2})} + e^{(-2^{2})} + e^{(-3^{2})} + e^{(-4^{2})} = |$$

Probability of Paying Back a Loan and Ethics

- Article discussing predicting "whether someone will pay back a loan":
 - <u>https://www.thecut.com/2017/05/what-the-words-you-use-in-a-loan-application-reveal.html</u>
- Words that increase probability of paying back the most: — debt-free, lower interest rate, after-tax, minimum payment, graduate.
- Words that decrease probability of paying back the most: – God, promise, will pay, thank you, hospital.
- Article also discusses an important issue: are all these features ethical?
 - Should you deny a loan because of religion or a family member in the hospital?
 - ICBC is limited in the features it is allowed to use for prediction.

Avoiding Underflow

• During the prediction, the probability can underflow:

$$p(y_i = c \mid x_i) \propto \prod_{j=1}^{d} \left[p(x_{ij} \mid y_i = c) \right] p(y_i = c)$$

 $\rightarrow All \text{ these are } < 1 \text{ so the product gets very small.}$

 Standard fix is to (equivalently) maximize the logarithm of the probability: Rember that log(ab) = log(a) + log(b) so log(πa_i) = ξ log(a_i)
 Since log is <u>monotonic</u> the 'c' maximizing p(y_i=clx_i) also maximizes log p(y_i=clx_i),
 So maximize log(11/11 [p(x_i; |y_i=c)]p(y_i=clx_i)] = ξ log(p(x_i; |y_i=c)) + log(p(y_i=c))
 + log(p(y_i=c))] = ξ log(p(x_i; |y_i=c)) + log(p(y_i=c))
 + log(p(y_i=c))]
 = ξ log(p(x_i; |y_i=c)) + log(p(y_i=c))
 + log(p(y_i=c))]
 = ξ log(p(x_i; |y_i=c)) + log(p(y_i=c))
 + log(p(y_i=c))]
 = ξ log(p(x_i; |y_i=c)) + log(p(y_i=c))
 = ξ log(p(x_i; |y_i=c)) + log(p(y_i=c)))
 = ξ log(p(x_i; |y_i=c)) + log(p(y_i=c))
 = ξ log(p(x_i; |y_i=c)) + log(p(y_i=c))
 = ξ log(p(x_i; |y_i=c)))
 = log(x_i; |y_i=c))
 = ξ log(p(x_i; |y_i=c))
 = log(x_i; |y_i=c))
 =

Less-Naïve Bayes

- The assumption is very strong, and there are "less naïve" versions:
 - Assume independence of all variables except up to 'k' largest 'j' where j < i.
 - E.g., naïve Bayes has k=0 and with k=2 we would have:

$$\approx \rho(y) \rho(x, ly) \rho(x_2 | x_1, y) \rho(x_3 | x_2, x_1, y) \rho(x_4 | x_3, x_2, y) \cdots \rho(x_d | x_{d-2}, x_{d-1}y)$$

- Fewer independence assumptions so more flexible, but hard to estimate for large 'k'.
- Another practical variation is "tree-augmented" naïve Bayes.

Computing p(x_i) under naïve Bayes

- Generative models don't need p(x_i) to make decisions.
- However, it's easy to calculate under the naïve Bayes assumption: $p(x_i) = \sum_{i=1}^{l} p(x_{i}, y = c)$ (marginalization rule) $= \sum_{i=1}^{k} p(x_i | y = c) p(y = c) (product rule)$ $= \sum_{c=1}^{d} \left[\prod_{j=1}^{d} p(x_{ij} | y = c) \right] p(y=c) \quad (naive Bayes assumption)$ These are the quantilies we compute during training.

Gaussian Discriminant Analysis

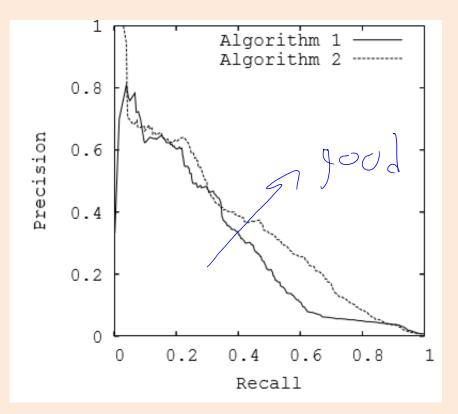
- Classifiers based on Bayes rule are called generative classifier:
 - They often work well when you have tons of features.
 - But they need to know $p(x_i | y_i)$, probability of features given the class.
 - How to "generate" features, based on the class label.
- To fit generative models, usually make BIG assumptions:
 - Naïve Bayes (NB) for discrete x_i:
 - Assume that each variables in x_i is independent of the others in x_i given y_i.
 - Gaussian discriminant analysis (GDA) for continuous x_i.
 - Assume that $p(x_i | y_i)$ follows a multivariate normal distribution.
 - If all classes have same covariance, it's called "linear discriminant analysis".

Other Performance Measures

- Classification error might be wrong measure:
 - Use weighted classification error if have different costs.
 - Might want to use things like Jaccard measure: TP/(TP + FP + FN).
- Often, we report precision and recall (want both to be high):
 - Precision: "if I classify as spam, what is the probability it actually is spam?"
 - Precision = TP/(TP + FP).
 - High precision means the filtered messages are likely to really be spam.
 - Recall: "if a message is spam, what is probability it is classified as spam?"
 - Recall = TP/(TP + FN)
 - High recall means that most spam messages are filtered.

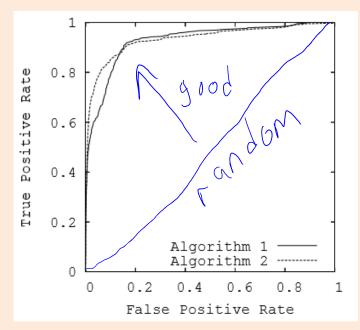
Precision-Recall Curve

- Consider the rule $p(y_i = spam' | x_i) > t$, for threshold 't'.
- Precision-recall (PR) curve plots precision vs. recall as 't' varies.



ROC Curve

- Receiver operating characteristic (ROC) curve:
 - Plot true positive rate (recall) vs. false positive rate (FP/FP+TN).



(negative examples classified as positive)

- Diagonal is random, perfect classifier would be in upper left.
- Sometimes papers report area under curve (AUC).
 - Reflects performance for different possible thresholds on the probability.

More on Unbalanced Classes

- With unbalanced classes, there are many alternatives to accuracy as a measure of performance:
 - Two common ones are the Jaccard coefficient and the F-score.
- Some machine learning models don't work well with unbalanced data. Some common heuristics to improve performance are:
 - Under-sample the majority class (only take 5% of the spam messages).
 - https://www.jair.org/media/953/live-953-2037-jair.pdf
 - Re-weight the examples in the accuracy measure (multiply training error of getting non-spam messages wrong by 10).
 - Some notes on this issue are <u>here</u>.

More on Weirdness of High Dimensions

- In high dimensions:
 - Distances become less meaningful:
 - All vectors may have similar distances.
 - Emergence of "hubs" (even with random data):
 - Some datapoints are neighbours to many more points than average.
 - Visualizing high dimensions and sphere-packing

Vectorized Distance Calculation

- To classify 't' test examples based on KNN, cost is O(ndt).
 - Need to compare 'n' training examples to 't' test examples, and computing a distance between two examples costs O(d).
- You can do this slightly faster using fast matrix multiplication:
 Let D be a matrix such that D_{ij} contains:

$$||x_i - y_j||^2 = ||x_i||^2 - 2x_i^T x_j + ||x_j||^2$$

where 'i' is a training example and 'j' is a test example.

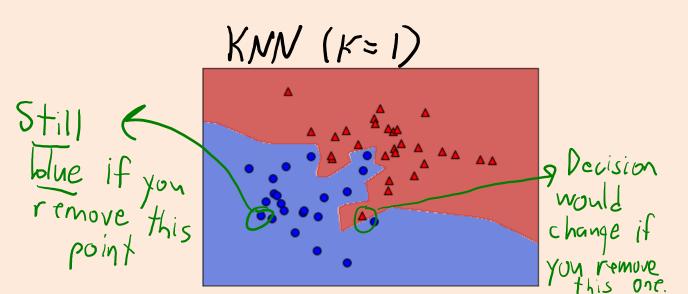
– We can compute D in Julia using:

X1.^2*ones(d,t) .+ ones(n,d)*(X2').^2 .- 2X1*X2'

And you get an extra boost because Julia uses multiple cores.

Condensed Nearest Neighbours

- Disadvantage of KNN is slow prediction time (depending on 'n').
- Condensed nearest neighbours:
 - Identify a set of 'm' "prototype" training examples.
 - Make predictions by using these "prototypes" as the training data.
- Reduces runtime from O(nd) down to O(md).



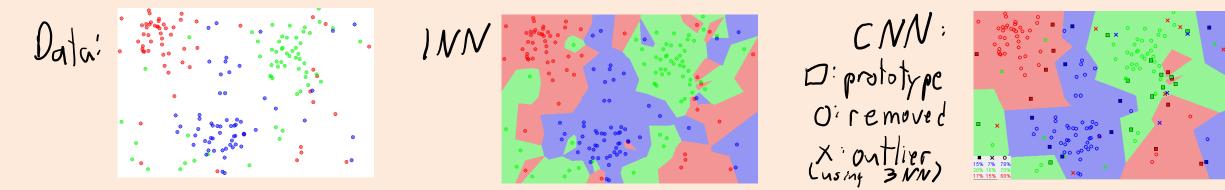
"Condensed version SAME

Condensed Nearest Neighbours

- Classic condensed nearest neighbours:
 - Start with no examples among prototypes.
 - Loop through the non-prototype examples 'i' in some order:
 - Classify x_i based on the current prototypes.
 - If prediction is not the true y_i, add it to the prototypes.
 - Repeat the above loop until all examples are classified correctly.
- Some variants first remove points from the original data, if a full-data KNN classifier classifies them incorrectly ("outliers').

Condensed Nearest Neighbours

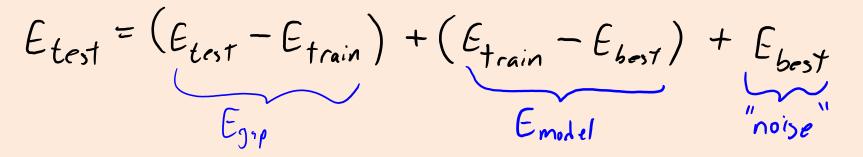
• Classic condensed nearest neighbours:



- Recent work shows that finding optimal compression is NP-hard.
 - An approximation algorithm algorithm was published in 2018:
 - "Near optimal sample compression for nearest neighbors"

Refined Fundamental Trade-Off

- Let E_{best} be the irreducible error (lowest possible error for *any* model).
 For example, irreducible error for predicting coin flips is 0.5.
- Some learning theory results use E_{best} to further decompose E_{test} :



- E_{gap} measures how sensitive we are to training data.
- E_{model} measures *if our model is complicated enough to fit data*.
- E_{best} measures how low can **any** model make test error.
 - E_{best} does not depend on what model you choose.

Consistency and Universal Consistency

- A model is consistent for a particular learning problem if:
 - E_{test} converges to E_{best} as 'n' goes to infinity, for that particular problem.
- A model is universally consistent for a class of learning problems if:
 E_{test} converges to E_{best} as 'n' goes to infinity, for all problems in the class.
- Class of learning problems will usually be "all problems satisfying":
 - A continuity assumption on the labels y^i as a function of x^i .
 - E.g., if xⁱ is close to x^j then they are likely to receive the same label.
 - A boundedness assumption of the set of xⁱ.

Consistency of KNN (Discrete/Deterministic Case)

- Let's show universal consistency of KNN in a simplified setting.
 - The xⁱ and yⁱ are binary, and yⁱ being a deterministic function of xⁱ.
 - Deterministic yⁱ implies that E_{best} is 0.
- Consider KNN with k=1:
 - After we observe an x_i, KNN makes right test prediction for that vector.
 - As 'n' goes to ∞ , each feature vectors with non-zero probability is observed.
 - We have $E_{test} = 0$ once we've seen all feature vectors with non-zero probability.
- Notes:
 - "No free lunch" isn't relevant as 'n' goes to ∞ : we eventually see everything.
 - But there are 2^d possible feature vectors, so might need a huge number of training examples.
 - It's more complicated if labels aren't deterministic and features are continuous.

Consistency of Non-Parametric Models

- Universal consistency can be been shown for many models we'll cover:
 - Linear models with polynomial basis.
 - Linear models with Gaussian RBFs.
 - Neural networks with one hidden layer and standard activations.
 - Sigmoid, tanh, ReLU, etc.
- But it's always the non-parametric versions that are consistent:
 - Where size of model is a function of 'n'.
 - Examples:
 - KNN needs to store all 'n' training examples.
 - Degree of polynomial must grow with 'n' (not true for fixed polynomial).
 - Number of hidden units must grow with 'n' (not true for fixed neural network).