
	 CPSC 340:
 Machine Learning and Data Mining

	 Convolutions
	 Spring 2022 (2021W2)

 Deep Learning

 Convolutional Neural Networks
	 – arguably the most important idea in computer vision

 Image Convolution Examples

 Image Convolution Examples

 Image Convolution Examples

 Image Convolution Examples

 3D Convolution

 3D Convolution

 3D Convolution

 3D Convolution

 3D Convolution

	 Convolutions as Features
 · Classic vision methods use convolutions as features :
	 – Usually have different types/variances/orientations.
	 – Can take maxes across locations/orientations/scales.

 · Notable convolutions:
	 – Gaussian (blurring/averaging).
	 – Laplace of Gaussian
	 (second- derivative).
	 – Gabor filters
	 (directional first- or higher- derivative).

	 Filter Banks
	 · To characterize context, we used to use filter banks like “MR8”:
	 – 1 Gaussian filter, 1 Laplacian of Gaussian filter.
	 – 6 max(abs(Gabor)) filters:
	 · 3 scales of sine/cosine (maxed over 6 orientations).

	 · Convolutional neural networks have replaced filter banks.
 http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

 Global and Local Features for Domain Adaptation

 · Suppose you want to solve a classification task,
 where you have very little labeled data from your domain.
 · But you have access to a huge dataset with the same labels,
 from a different domain.
 · Example:
	 – You want to label POS tags in medical articles, and pay a few $$$ to label
	 some.
	 – You have access the thousands of examples of Wall Street Journal POS
	 labels.
 · Domain adaptation: using data from different domain to help.

 Global and Local Features for Domain Adaptation

 · “Frustratingly easy domain adaptation”:
	 – Use “global” features across the domains, and “local” features for each
	 domain.
	 – “Global” features let you learn patterns that occur across domains.
	 · Leads to sensible predictions for new domains without any data.
	 – “Local” features let you learn patterns specific to each domain.
	 · Improves accuracy on particular domains where you have more data.
	 – For linear classifiers this would look like:

	 Image Coordinates
 · Should we use the image coordinates?
	 – E.g., the pixel is at location (124, 78) in the image.

 · Considerations:
	 – Is the interpretation different in different areas of the image?
	 – Are you using a linear model?
	 · Would “distance to center” be more logical?
	 – Do you have enough data to learn about all areas of the image?

	 Alignment- Based Features
 · The position in the image is important in brain tumour application.
	 – But we didn’t have much data, so coordinates didn’t make sense.
 · We aligned the images with a “template image”.

	 Alignment- Based Features
 · The position in the image is important in brain tumour application.
	 – But we didn’t have much data, so coordinates didn’t make sense.
 · We aligned the images with a “template image”.
	 – Allowed “alignment- based” features:

 Motivation: Automatic Brain Tumor Segmentation
 · Final features for brain tumour segmentation:
	 – Gaussian convolution of original/template/priors/symmetry, Laplacian of Gaussian on original.
	 · All with 3 variances.
	 · Max(Gabor) with sine and cosine on orginal (3 variances).

 Motivation: Automatic Brain Tumour Segmentation

 · Logistic regression and SVMs among best methods.
	 – When using these 72 features from last slide.
	 – If you used all features I came up with, it overfit .

 · Possible solutions to overfitting:
	 – Forward selection was too slow.
	 · Just one image gives 8 million training examples.
	 – I did manual feature selection (“guess and check”).
	 – L2- regularization with all features also worked.
	 · But this is slow at test time .
	 · L1- regularization gives best of regularization and feature selection.

	 FFT implementation of convolution
 · Convolutions can be implemented using fast Fourier transform:
	 – Take FFT of image and filter, multiply elementwise, and take inverse FFT.

 · It has faster asymptotic running time but there are some catches:
	 – You need to be using periodic boundary conditions for the convolution.
	 – Constants matter: it may not be faster in practice.
	 · Especially compared to using GPUs to do the convolution in hardware.
	 – The gains are largest for larger filters (compared to the image size).

 74

	 SIFT Features
	 · Scale-invariant feature transform (SIFT):
	 – Features used for object detection (“is particular object in the image”?)
	 – Designed to detect unique visual features of objects at multiple scales.
	 – Proven useful for a variety of object detection tasks.

 http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html

	 1D Convolution as Matrix Multiplication
 · 1D convolution:
	 – Takes signal ‘x’ and filter ‘w’ to produces vector ‘z’:

 – Can be written as a matrix multiplication:

	 1D Convolution as Matrix Multiplication
 · Each element of a convolution is an inner product:

 · So convolution is a matrix multiplication (I’m ignoring boundaries):

 · The shorter ‘w’ is, the more sparse the matrix is.

	 2D Convolution as Matrix Multiplication
 · 2D convolution:
	 – Signal ‘x’, filter ‘w’, and output ‘z’ are now all images/matrices:

	 – Vectorized ‘z’ can be written as a matrix multiplication with vectorized ‘x’:

 Motivation for Convolutional Neural Networks
 · Consider training neural networks on 256 by 256 images.
	 – This is 256 by 256 by 3 ≈ 200,000 inputs.
 · If first layer has k=10,000, then it has about 2 billion parameters .
	 – We want to avoid this huge number (due to storage and overfitting).

 · Key idea: make Wx i act like several convolutions (to make it sparse):
 1. Each row of W only applies to part of xi .

 2. Use the same parameters between rows.

 · Forces most weights to be zero, reduces number of parameters.

 Motivation for Convolutional Neural Networks
 · Classic vision methods uses fixed convolutions as features:
	 – Usually have different types/variances/orientations.
	 – Can do subsampling or take maxes across locations/orientations/scales.

 Motivation for Convolutional Neural Networks
 · Convolutional neural networks learn the convolutions:
	 – Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
	 – Don’t pick from fixed convolutions, but learn the elements of the filters.

	 Motivation for Convolutional Neural Networks
	 · Convolutional neural networks learn the convolutions:
	 – Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
	 – Can do multiple layers of convolution to get deep hierarchical features.

 http://fortune.com/ai-artificial-intelligence -deep-machine -learning/

	 Convolutional Neural Networks
 · Convolutional Neural Networks classically have 3 layer “types”:
	 – Fully connected layer : usual neural network layer with unrestricted W.

	 Convolutional Neural Networks
 · Convolutional Neural Networks classically have 3 layer “types”:
	 – Fully connected layer : usual neural network layer with unrestricted W.
	 – Convolutional layer : restrict W to act like several convolutions.

	 Convolutional Neural Networks
 · Convolutional Neural Networks classically have 3 layer “types”:
	 – Fully connected layer : usual neural network layer with unrestricted W.
	 – Convolutional layer : restrict W to act like several convolutions.
	 – Pooling layer : combine results of convolutions.
	 · Can add some invariance or just make the number of parameters smaller.
	 · Often ‘max pooling ’:

	 Convolutional Neural Networks
 · Convolutional Neural Networks classically have 3 layer “types”:
	 – Fully connected layer : usual neural network layer with unrestricted W.
	 – Convolutional layer : restrict W to act like several convolutions.
	 – Pooling layer : combine results of convolutions.
	 · Can add some invariance or just make the number of parameters smaller.
	 · Often ‘max pooling’ or else ‘average pooling ’:

	 Max Pooling vs Average Pooling
 · Both downsample the image

 · Max pooling: “any of these options is present”
	 – Much more common, especially in early layers
	 – “There’s an edge here, but I don’t really care how thick it is”

 · Average pooling: “all/most of these options are present”
	 – If used, more often at the end of the network
	 – “Most of the big patches look like a picture of a train“

 Hierarchically composed feature representations

	 DeepViz Toolbox

• We’re ready to watch this now!

• https://youtu.be/AgkfIQ4IGaM

	 LeNet for Optical Character Recognition

 http://blog.csdn.net/strint/article/details/44163869

	 Deep Hierarchies in the Visual System

 http://www.strokenetwork.org/newsletter/articles/vision.htm
 https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing

 Deep Hierarchies in Optics

 http://www.argmin.net/2018/01/25/optics/

	 DenseNet
	 · More recent variation is “DenseNets ”:
	 – Each layer can see all the values from many previous layers.
	 – Gets rid of vanishing gradients.

	 – May get same performance
	 with fewer parameters/layers.

 https://arxiv.org /abs /1512.03385

 Deep Learning and the Fundamental Trade- Off
 · Neural networks are subject to the fundamental trade-off:
	 – With increasing depth, training error of global optima decreases.
	 – With increasing depth, training error may poorly approximate test error.

 · We want deep networks to model highly non-linear data.
	 – But increasing the depth can lead to overfitting.

 · How could GoogLeNet use 22 layers?
	 – Many forms of regularization and keeping model complexity under control.
	 – Unlike linear models, typically use multiple types of regularization.

	 Standard Regularization
 · Traditionally, we’ve added our usual L2 -regularizers :

 · L2 -regularization often called “weight decay ” in this context.
	 – Could also use L1- regularization: gives sparse network .

	 Standard Regularization
 · Traditionally, we’ve added our usual L2 -regularizers :

 · L2 -regularization often called “weight decay ” in this context.
	 – Adds ! W to gradient, so (S)GD “decays” the weights ‘W’ at each step
	 – Could also use L1- regularization: gives sparse network .
 · Hyper-parameter optimization gets expensive:
	 – Try to optimize validation error in terms of λ1 , λ2 , λ3 , λ4 .
	 – In addition to step- size, number of layers, size of layers, initialization.
 · Recent result:
	 – Adding a regularizer in this way can create bad local optima .

	 Early Stopping
	 · Another common type of regularization is “early stopping”:
	 – Monitor the validation error as we run stochastic gradient .
	 – Stop the algorithm if validation error starts increasing .

 http://cs231n.github.io/neural-networks -3/

	 Dropout
	 · Dropout is a more recent form of explicit regularization:
	 – On each iteration, randomly set some xi and z i to zero (often use 50%).

	 – Adds invariance to missing inputs or latent factors
	 · Encourages distributed representation rather than relying on specific zi .

	 – Can be interpreted as an ensemble over networks with different parts missing.
	 – After a lot of early success, dropout is already kind of going out of fashion.
 http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Discussion & Summary of CNNs
 · Convolutional layers reduce the number of parameters in several ways:
	 – Each hidden unit only depends on small number of inputs from previous layer.
	 – We use the same filters across the image .
	 · So we do not learn a different weight for each “connection” like in classic neural networks.
	 – Pooling layers decrease the image size .

 · CNNs give some amount of translation invariance :
	 – Because same filters used across the image, they can detect a pattern anywhere in the image .
	 · Even in image locations where the pattern has never been seen.

 · CNNs are not only for images!
	 – Can use CNNs for 1D sequences like sound or language or biological sequences.
	 – Can use CNNs for 3D objects like videos or medical image volumes.
	 – Can use CNNs for graphs.
 · But you do need some notion of “neighbourhood ” for convolutions to make sense.
 · Regularization is crucial to neural net performance (convolutional or otherwise)

	 – L2- regularization, early stopping, dropout, implicit regularization of SGD.

(end, tested technical
material)

Some high-level principles, and ethical issues we will
cover are still testable

