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 Deep Learning



           Convolutional Neural Networks
	 – arguably the most important idea in computer vision 
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	 Convolutions as Features
 ·  Classic vision methods use convolutions as features :
	 – Usually have different types/variances/orientations.
	 – Can take maxes across locations/orientations/scales.

 ·  Notable convolutions:
	 – Gaussian (blurring/averaging).
	 – Laplace of Gaussian
	 (second- derivative).
	 – Gabor filters
	 (directional first- or higher- derivative).



	 Filter Banks
	 ·  To characterize context, we used to use filter banks like “MR8”:
	 – 1 Gaussian filter, 1 Laplacian of Gaussian filter.
	 – 6 max(abs(Gabor)) filters:
	 · 3 scales of sine/cosine (maxed over 6 orientations).

	 ·  Convolutional neural networks have replaced filter banks.
 http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html



  Global and Local Features for Domain Adaptation

 ·  Suppose you want to solve a classification task,
  where you have very little labeled data from your domain.
 ·  But you have access to a huge dataset with the same labels,
  from a different domain.
 ·  Example:
	 – You want to label POS tags in medical articles, and pay a few $$$ to label
	 some.
	 – You have access the thousands of examples of Wall Street Journal POS
	 labels.
 ·  Domain adaptation: using data from different domain to help.



  Global and Local Features for Domain Adaptation

 ·  “Frustratingly easy domain adaptation”:
	 – Use “global” features across the domains, and “local” features for each
	 domain.
	 – “Global” features let you learn patterns that occur across domains.
	 · Leads to sensible predictions for new domains without any data.
	 – “Local” features let you learn patterns specific to each domain.
	 · Improves accuracy on particular domains where you have more data.
	 – For linear classifiers this would look like:



	 Image Coordinates
 ·  Should we use the image coordinates?
	 – E.g., the pixel is at location (124, 78) in the image.

 ·  Considerations:
	 – Is the interpretation different in different areas of the image?
	 – Are you using a linear model?
	 · Would “distance to center” be more logical?
	 – Do you have enough data to learn about all areas of the image?



	 Alignment- Based Features
 ·  The position in the image is important in brain tumour application.
	 – But we didn’t have much data, so coordinates didn’t make sense.
 ·  We aligned the images with a “template image”.



	 Alignment- Based Features
 ·  The position in the image is important in brain tumour application.
	 – But we didn’t have much data, so coordinates didn’t make sense.
 ·  We aligned the images with a “template image”.
	 – Allowed “alignment- based” features:



  Motivation: Automatic Brain Tumor Segmentation
 ·  Final features for brain tumour segmentation:
	 –  Gaussian convolution of original/template/priors/symmetry, Laplacian of Gaussian on original.
	 ·  All with 3 variances.
	 ·  Max(Gabor) with sine and cosine on orginal (3 variances).



 Motivation: Automatic Brain Tumour Segmentation

 ·  Logistic regression and SVMs among best methods.
	 – When using these 72 features from last slide.
	 – If you used all features I came up with, it overfit .

 ·  Possible solutions to overfitting:
	 – Forward selection was too slow.
	 · Just one image gives 8 million training examples.
	 – I did manual feature selection (“guess and check”).
	 – L2- regularization with all features also worked.
	 · But this is slow at test time .
	 · L1- regularization gives best of regularization and feature selection.



	 FFT implementation of convolution
 ·  Convolutions can be implemented using fast Fourier transform:
	 – Take FFT of image and filter, multiply elementwise, and take inverse FFT.

 ·  It has faster asymptotic running time but there are some catches:
	 – You need to be using periodic boundary conditions for the convolution.
	 – Constants matter: it may not be faster in practice.
	 · Especially compared to using GPUs to do the convolution in hardware.
	 – The gains are largest for larger filters (compared to the image size).
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	 SIFT Features
	 ·  Scale-invariant feature transform (SIFT):
	 – Features used for object detection (“is particular object in the image”?)
	 – Designed to detect unique visual features of objects at multiple scales.
	 – Proven useful for a variety of object detection tasks.

 http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html



	 1D Convolution as Matrix Multiplication
 ·  1D convolution:
	 – Takes signal ‘x’ and filter ‘w’ to produces vector ‘z’:

 – Can be written as a matrix multiplication:



	 1D Convolution as Matrix Multiplication
 ·  Each element of a convolution is an inner product:

 ·  So convolution is a matrix multiplication (I’m ignoring boundaries):

 ·  The shorter ‘w’ is, the more sparse the matrix is.



	 2D Convolution as Matrix Multiplication
 ·  2D convolution:
	 – Signal ‘x’, filter ‘w’, and output ‘z’ are now all images/matrices:

	 – Vectorized ‘z’ can be written as a matrix multiplication with vectorized ‘x’:



 Motivation for Convolutional Neural Networks
 ·  Consider training neural networks on 256 by 256 images.
	 – This is 256 by 256 by 3 ≈ 200,000 inputs.
 ·  If first layer has k=10,000, then it has about 2 billion parameters .
	 – We want to avoid this huge number (due to storage and overfitting).

 ·  Key idea: make Wx i act like several convolutions (to make it sparse):
 1.  Each row of W only applies to part of xi .

 2.  Use the same parameters between rows.

 ·  Forces most weights to be zero, reduces number of parameters.



 Motivation for Convolutional Neural Networks
 ·  Classic vision methods uses fixed convolutions as features:
	 – Usually have different types/variances/orientations.
	 – Can do subsampling or take maxes across locations/orientations/scales.



 Motivation for Convolutional Neural Networks
 ·  Convolutional neural networks learn the convolutions:
	 – Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
	 – Don’t pick from fixed convolutions, but learn the elements of the filters.



	 Motivation for Convolutional Neural Networks
	 ·  Convolutional neural networks learn the convolutions:
	 – Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
	 – Can do multiple layers of convolution to get deep hierarchical features.

 http://fortune.com/ai-artificial-intelligence -deep-machine -learning/



	 Convolutional Neural Networks
 ·  Convolutional Neural Networks classically have 3 layer “types”:
	 – Fully connected layer : usual neural network layer with unrestricted W.
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 ·  Convolutional Neural Networks classically have 3 layer “types”:
	 – Fully connected layer : usual neural network layer with unrestricted W.
	 – Convolutional layer : restrict W to act like several convolutions.
	 – Pooling layer : combine results of convolutions.
	 · Can add some invariance or just make the number of parameters smaller.
	 · Often ‘max pooling ’:



	 Convolutional Neural Networks
 ·  Convolutional Neural Networks classically have 3 layer “types”:
	 – Fully connected layer : usual neural network layer with unrestricted W.
	 – Convolutional layer : restrict W to act like several convolutions.
	 – Pooling layer : combine results of convolutions.
	 · Can add some invariance or just make the number of parameters smaller.
	 · Often ‘max pooling’ or else ‘average pooling ’:



	 Max Pooling vs Average Pooling
 ·  Both downsample the image

 ·  Max pooling: “any of these options is present”
	 – Much more common, especially in early layers
	 – “There’s an edge here, but I don’t really care how thick it is”

 ·  Average pooling: “all/most of these options are present”
	 – If used, more often at the end of the network
	 – “Most of the big patches look like a picture of a train“





 Hierarchically composed feature representations



	 DeepViz Toolbox

• We’re ready to watch this now!

• https://youtu.be/AgkfIQ4IGaM



	 LeNet for Optical Character Recognition

 http://blog.csdn.net/strint/article/details/44163869



	 Deep Hierarchies in the Visual System

 http://www.strokenetwork.org/newsletter/articles/vision.htm
 https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing



 Deep Hierarchies in Optics

 http://www.argmin.net/2018/01/25/optics/



	 DenseNet
	 ·  More recent variation is “DenseNets ”:
	 – Each layer can see all the values from many previous layers.
	 – Gets rid of vanishing gradients.

	 – May get same performance
	 with fewer parameters/layers.

 https://arxiv.org /abs /1512.03385



 Deep Learning and the Fundamental Trade- Off
 ·  Neural networks are subject to the fundamental trade-off:
	 – With increasing depth, training error of global optima decreases.
	 – With increasing depth, training error may poorly approximate test error.

 ·  We want deep networks to model highly non-linear data.
	 – But increasing the depth can lead to overfitting.

 ·  How could GoogLeNet use 22 layers?
	 – Many forms of regularization and keeping model complexity under control.
	 – Unlike linear models, typically use multiple types of regularization.



	 Standard Regularization
 ·  Traditionally, we’ve added our usual L2 -regularizers :

 ·  L2 -regularization often called “weight decay ” in this context.
	 – Could also use L1- regularization: gives sparse network .



	 Standard Regularization
 ·  Traditionally, we’ve added our usual L2 -regularizers :

 ·  L2 -regularization often called “weight decay ” in this context.
	 – Adds ! W to gradient, so (S)GD “decays” the weights ‘W’ at each step
	 – Could also use L1- regularization: gives sparse network .
 ·  Hyper-parameter optimization gets expensive:
	 – Try to optimize validation error in terms of λ1 , λ2 , λ3 , λ4 .
	 – In addition to step- size, number of layers, size of layers, initialization.
 ·  Recent result:
	 – Adding a regularizer in this way can create bad local optima .



	 Early Stopping
	 ·  Another common type of regularization is “early stopping”:
	 – Monitor the validation error as we run stochastic gradient .
	 – Stop the algorithm if validation error starts increasing .

 http://cs231n.github.io/neural-networks -3/



	 Dropout
	 ·  Dropout is a more recent form of explicit regularization:
	 – On each iteration, randomly set some xi and z i to zero (often use 50%).

	 – Adds invariance to missing inputs or latent factors
	 ·  Encourages distributed representation rather than relying on specific zi .

	 – Can be interpreted as an ensemble over networks with different parts missing.
	 – After a lot of early success, dropout is already kind of going out of fashion.
 http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf



Discussion & Summary of CNNs
 ·  Convolutional layers reduce the number of parameters in several ways:
	 –  Each hidden unit only depends on small number of inputs from previous layer.
	 –  We use the same filters across the image .
	 ·  So we do not learn a different weight for each “connection” like in classic neural networks.
	 –  Pooling layers decrease the image size .

 ·  CNNs give some amount of translation invariance :
	 –  Because same filters used across the image, they can detect a pattern anywhere in the image .
	 ·  Even in image locations where the pattern has never been seen.

 ·  CNNs are not only for images!
	 –  Can use CNNs for 1D sequences like sound or language or biological sequences.
	 –  Can use CNNs for 3D objects like videos or medical image volumes.
	 –  Can use CNNs for graphs.
 ·  But you do need some notion of “neighbourhood ” for convolutions to make sense. 
 ·  Regularization is crucial to neural net performance (convolutional or otherwise)

	 – L2- regularization, early stopping, dropout, implicit regularization of SGD.



(end, tested technical 
material)

Some high-level principles, and ethical issues we will 
cover are still testable


