CPSC 340:
Machine Learning and Data Mining
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Convolutional Neural Networks

—arguably the most important 1dea in computer vision
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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3D Convolution
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3D Convolution
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Convolutions as Features

- Classic vision methods use convolutions as features :

— Usually have different types/variances/orientations.
— Can take maxes across locations/orientations/scales.

- Notable convolutions:
— Gaussian (blurring/averaging).

— Laplace of Gaussian

(second- derivative). B —0
— Gabor filters H—B
(directional first- or higher- derivative). H ~— for This



Filter Banks

- To characterize context, we used to use filter banks like “MR&”:

— 1 Gaussian filter, 1 Laplacian of Gaussian filter. =“

— 6 max(abs(Gabor)) filters: ~ -

- 3 scales of sine/cosine (maxed over 6 orientations). ==
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- Convolutional neural networks have replaced filter banks.
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Global and Local Features for Domain Adaptation

- Suppose you want to solve a classification task,
where you have very little labeled data from your domain.

- But you have access to a huge dataset with the same labels,
from a different domain.
- Example:

— You want to label POS tags in medical articles, and pay a few $$$ to label
some.

— You have access the thousands of examples of Wall Street Journal POS
labels.

- Domain adaptation: using data from different domain to help.
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Global and Local Features for Domain Adaptation

- “Frustratingly easy domain adaptation”:
— Use “global” features across the domains, and “local” features for each
domain.
— “Global” features let you learn patterns that occur across domains.
- Leads to sensible predictions for new domains without any data.

— “Local” features let you learn patterns specific to each domain.

- Improves accuracy on particular domains where you have more data.
— For linear classifiers this would look like:
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Image Coordinates

Should we use the image coordinates?
— E.g., the pixel 1s at location (124, 78) in the image.

- Considerations:

— Is the interpretation different in different areas of the image?
— Are you using a linear model?
- Would ““distance to center” be more logical?

— Do you have enough data to learn about all areas of the image?
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Alignment- Based Features o

- The position 1n the 1mage 1s important in brain tumour application.

— But we didn’t have much data, so coordinates didn’t make sense.

- We aligned the images with a “template 1mage”.
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Alignment- Based Features

- The position 1n the 1mage 1s important in brain tumour application.

— But we didn’t have much data, so coordinates didn’t make sense.

- We aligned the images with a “template 1mage”.

— Allowed “alignment- based” features: il
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Motivation: Automatic Brain Tumor Segmentation

- Final features for brain tumour segmentation:

— Gaussian convolution of original/template/priors/symmetry, Laplacian of Gaussian on original.
- All with 3 variances.
- Max(Gabor) with sine and cosine on orgmal (3 Varlances)
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Motivation: Automatic Brain Tumour Segmentation

- Logistic regression and SVMs among best methods.

— When using these 72 features from last slide.
— If you used all features I came up with, it overfit .

- Possible solutions to overfitting:

— Forward selection was too slow.

- Just one 1mage gives 8 million training examples.

— I did manual feature selection (“‘guess and check™).

— L2- regularization with all features also worked.

- But this 1s slow at test time .

- L1- regularization gives best of regularization and feature selection.
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FFT implementation of convolution

- Convolutions can be implemented using fast Fourier transform:

— Take FFT of image and filter, multiply elementwise, and take inverse FFT.

- It has faster asymptotic running time but there are some catches:

— You need to be using periodic boundary conditions for the convolution.
— Constants matter: it may not be faster in practice.

- Especially compared to using GPUs to do the convolution in hardware.

— The gains are largest for larger filters (compared to the image size).
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SIFT Features o

- Scale-invariant feature transform (SIFT):
— Features used for object detection (““is particular object in the 1mage”?)
— Designed to detect unique visual features of objects at multiple scales.
— Proven useful for a variety of object detection tasks.




1D Convolution as Matrix Multiplication

- 1D convolution:

— Takes signal ‘x’ and filter ‘w’ to produces vector ‘z’:

X * % = Z
C1-2
— Can be written as a matrix multiplication:
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1D Convolution as Matrix Multiplication

- Each element of a convolution 1s an inner product:
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- So convolution 1s a matrix multiplication (I’'m 1gnoring boundaries):

S o e -0 00
2 W)( WL‘W(’ W: O ~ - - gb’u’fnx Coan ég

— 0
0 O V?r\/ S_ﬁLfSG O"\t{

i ” ly has 2m*l varia
- The shorter ‘w’ 1s, the more sparse the matrix 1s. s Rl




2D Convolution as Matrix Multiplication

- 2D convolution:

— Signal ‘x’, filter ‘w’, and output ‘z’ are now all images/matrices:
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— Vectorized ‘z’ can be written as a matrix multiplication with vectorized ‘x’:
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Motivation for Convolutional Neural Networks

- Consider training neural networks on 256 by 256 images.
— This 1s 256 by 256 by 3 = 200,000 inputs.
- If first layer has k=10,000, then 1t has about 2 billion parameters .

— We want to avoid this huge number (due to storage and overfitting).

- Key 1dea: make Wx iact like several convolutions (to make 1t sparse):

1. Each row of W only applies to part of xi. -
W':[_O 0O O —w— 0 ODJ
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- Forces most weights to be zero, reduces number of parameters.

2. Use the same parameters between rows.




Motivation for Convolutional Neural Networks

- Classic vision methods uses fixed convolutions as features:

— Usually have different types/variances/orientations.
— Can do subsampling or take maxes across locations/orientations/scales.




Motivation for Convolutional Neural Networks

- Convolutional neural networks learn the convolutions:

— Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
— Don’t pick from fixed convolutions, but learn the elements of the filters.




Motivation for Convolutional Neural Networks

- Convolutional neural networks learn the convolutions:
— Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.

— Can do multiple layers of convolution to get deep hierarchical features.
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Convolutional Neural Networks

- Convolutional Neural Networks classically have 3 layer “types™:

— Fully connected layer : usual neural network layer with unrestricted W.
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Convolutional Neural Networks

- Convolutional Neural Networks classically have 3 layer “types”:

— Fully connected layer : usual neural network layer with unrestricted W.
— Convolutional layer : restrict W to act like several convolutions.




Convolutional Neural Networks

- Convolutional Neural Networks classically have 3 layer “types™:

— Fully connected layer : usual neural network layer with unrestricted W.
— Convolutional layer : restrict W to act like several convolutions.
— Pooling layer : combine results of convolutions.

- Can add some invariance or just make the number of parameters smaller.
- Often ‘max pooling ’:
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Convolutional Neural Networks

- Convolutional Neural Networks classically have 3 layer “types™:

— Fully connected layer : usual neural network layer with unrestricted W.
— Convolutional layer : restrict W to act like several convolutions.
— Pooling layer : combine results of convolutions.

- Can add some invariance or just make the number of parameters smaller.
- Often ‘max pooling’ or else ‘average pooling ’:
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Max Pooling vs Average Pooling

- Both downsample the image

- Max pooling: “any of these options is present”

— Much more common, especially in early layers
— “There’s an edge here, but I don’t really care how thick it 1s”

- Average pooling: “all/most of these options are present”
— If used, more often at the end of the network

— “Most of the big patches look like a picture of a train*



l;: B =T — CAR
" —| — TRUCK
& " | — VAN
- [[] — BicYcLE
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN o:luulgrm SOFTMAX

b 3 . i

FEATURE LEARNING CLASSIFICATION



Hierarchy of feature representations
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Lee et al, 2009.



DeepViz Toolbox

® We're ready to watch this now!

® https://youtu.be/AgkflQ41GaM



LeNet for Optical Character Recognition
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Deep Hierarchies 1n the Visual System
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Deep Hierarchies 1n Optics
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DenseNet -

- More recent variation i1s “DenseNets ’:

— Each layer can see all the values from many previous layers.
— Gets rid of vanishing gradients. .

— May get same performance
with fewer parameters/layers.

Figure 1: A 5-layer dense block with a growth rate of £ = 4.
https://arxiv.org /abs /1512.03385 Each layer takes all preceding feature-maps as input.



Deep Learning and the Fundamental Trade- Off

- Neural networks are subject to the fundamental trade-off:

— With increasing depth, training error of global optima decreases.
— With increasing depth, training error may poorly approximate test error.

- We want deep networks to model highly non-linear data.

— But increasing the depth can lead to overfitting.

- How could GooglLeNet use 22 layers?
— Many forms of regularization and keeping model complexity under control.

— Unlike linear models, typically use multiple types of regularization.



Standard Regularization
- Traditionally, we’ve added our usual L2 -regularizers :
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- L2 -regularization often called “weight decay ” 1n this context.

— Could also use L1- regularization: gives sparse network .



Standard Regularization

- Traditionally, we’ve added our usual L2 -regularizers :
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- L2 -regularlzatlon often called “weight decay in this context.

— Adds ! W to gradient, so (S)GD “decays” the weights ‘W "at each step
— Could also use L1- regularization: gives sparse network .

- Hyper-parameter optimization gets expensive:
— Try to optimize validation error in terms of A1, A2, A3, A4.

— In addition to step- size, number of layers, size of layers, initialization.

- Recent result:
— Adding a regularizer in this way can create bad local optima .



Early Stopping

- Another common type of regularization 1s “early stopping”:

— Monttor the validation error as we run stochastic gradient .
— Stop the algorithm if validation error starts increasing .

A i
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Vf\-rof hnm}dy d y\m? Wt
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Dropout

- Dropout 1s a more recent form of explicit regularization:
— On each iteration, randomly set some xiand z i to zero (often use 50%).

(a) Standard Neural Net (b) After applying dropout.

— Adds invariance to missing inputs or latent factors
- Encourages distributed representation rather than relying on specific zi.

— Can be mterpreted as an ensemble over networks with different parts missing.
— After a lot of early success, dropout 1s already kind of going out of fashion.



Discussion & Summary of CNNs

- Convolutional layers reduce the number of parameters in several ways:
— Each hidden unit only depends on small number of inputs from previous layer.

— We use the same filters across the image .
- So we do not learn a different weight for each “connection” like in classic neural networks.

— Pooling layers decrease the image size .

- CNNs give some amount of translation ivariance :

— Because same filters used across the image, they can detect a pattern anywhere in the image .
- Even in image locations where the pattern has never been seen.

+ CNNs are not only for images!

— Can use CNNs for 1D sequences like sound or language or biological sequences.
— Can use CNNs for 3D objects like videos or medical image volumes.

— Can use CNNs for graphs.

- But you do need some notion of “neighbourhood ” for convolutions to make sense.

- Regularization is crucial to neural net performance (convolutional or otherwise)

— L2- regularization, early stopping, dropout, implicit regularization of SGD.



(end, tested technical
material)

Some high-level principles, and ethical issues we will
cover are still testable



