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 Admin
 ·  Course surveys
	 – Faculty of Science requests we allocate class time to them 
	 – https://seoi.ubc.ca/surveys  

·  Reminder
	 – We care deeply about your education, so we take them very seriously
	 – You will be able to evaluate the class overall, and then each prof separately
	 – As always, please remember we’re real people, so both praise and constructive criticism
	 feedback are great. Please avoid personal, hurtful, or unconstructive negative
	 comments. Tone matters!



 Deep Learning



           Convolutional Neural Networks
	 – arguably the most important idea in computer vision 



  Motivation: Automatic Brain Tumor Segmentation
 ·  Task: labeling tumors and normal tissue in multi - modal MRI data.

 Input:	 Output:

 ·  Applications:
	 – Radiation therapy target planning, quantifying treatment responses.
	 – Mining growth patterns, image - guided surgery.
 ·  Challenges:
	 – Variety of tumor appearances, similarity to normal tissue.
	 – “You are never going to solve this problem.”



	 Naïve Voxel - Level Classifier
 ·  We could treat classifying a voxel as supervised learning:
	 – Standard representation of image: each pixel gets “intensity” between 0 and 255.

 ·  We can formulate predicting yi given x i as supervised learning.
 ·  But it doesn’t work at all with a linear weighting of these features.



	 Need to Summarize Local Context
 ·  The individual pixel intensity values are almost meaningless:
	 – The same xi could lead to different yi .

	 · Intensities not standardized.
	 · Non- trivial overlap in signal for different tissue types.
	 · “Partial volume” effects at boundaries of tissue types.



	 Need to Summarize Local Context
 ·  We need to represent the “context” of the pixel (what is around it).

	 – Include all the values of neighbouring pixels as extra features?
	 · Run into coupon collection problems: requires lots of data to find patterns.

	 – Measure neighbourhood summary statistics (mean, variance, histogram)?
	 · Variation on bag of words problem: loses spatial information present in voxels.

	 – Standard approach uses convolutions to represent neighbourhood.



 Tumor detection: example feature: measuring “brightness” of a region
	 - This pixel is in a “bright” area of the image, which suggests a tumor
	 - But the actual numeric intensity value of the pixel is the same as in darker
	 “gray matter” areas.

	 - I want a feature saying “this pixel is in a bright area of the image”.
	 - This will us help identify that it’s a tumor pixel.

	 -  How to measure brightness in area? Easy way: take average pixel intensity in “neighborhood”.

	 -  Applying this “averaging” to every pixel gives a new image:

	 -  We can use “pixel value in new image” as a new feature.
	 -  New feature helps identify if pixel is in a “bright” area.



	 The annoying thing about squares
 ·  “Take the average of a square window” loses spatial information.
 ·  Example:



	 Fixing the “square” issues
 ·  Consider instead “blurring” the image.
	 – Gets rid of “local” noise, but better preserves spatial information.

 ·  How do you “blur”?
	 – Take weighted average of window, putting more “weight” on “close” pixels:



	           Convolution 

 ·  Taking a “weighted average of neighbours ” is called “convolution”.
	 – Gives you a new (transformed) feature for each pixel
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	 Convolution: Big Picture
 ·  How do you use convolution to get features?
	 – Apply several different convolutions to your image.
	 – Each convolution gives a different “image” value at each location.
	 – Use theses different image values to give features at each location.



	 Convolutions: Big Picture
 ·  What can features coming from convolutions represent?
	 – Some filters give you an average value of the neighbourhood.

	 – Some filters detect edges (directionally) (first derivative) 
	 · “Is there a change from dark to bright?”
	 · “If so, from which direction in space?”

	 – Some filters detect lines (“second derivative”)
	 · “Is there a spike or is the change speeding up?”



	 1D Convolution Example
 ·  Consider a 1D “signal” (maybe from sound):
	 – We’ll come back to images later.

 ·  For each “time”:
	 – Compute dot- product of signal at surrounding times with a “filter ” of weights.

 ·  This gives a new “signal” :
	 – Measures a property of “neighbourhood”.
	 – This particular filter shows a local
	 “how spiky ” value.



 1D Convolution (notation is specific to this lecture)

 ·  1D convolution input:
	 – Signal ‘x’ which is a vector length ‘n’.
	 · Indexed by i = 1, 2, …, n

	 – Filter ‘w’ which is a vector of length ‘2m+1’:
	 · Indexed by i = - m, - m+1, …, - 2, 0, 1, 2, …, m - 1, m

 ·  Output is a vector of length ‘n’ with elements:

	 – You can think of this as centering w at position ‘ i ’,
	 and taking a dot product of ‘w’ with that “part” xi .



	 1D Convolution
 ·  1D convolution example:
	 – Signal ‘x’:

 0	 1	 1	 2	 3	 5	 8	 13

 – Filter ‘w’:
 0	 -1	 2	 -1	 0

 – Convolution ‘z’:
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 1D Convolution Examples
 ·  Examples:
	 – “Identity”

	 – “Translation”
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	 Boundary Issue
 ·  What can we do about the “?” at the edges ?

 ·  Can assign values past the boundaries :
	 · “Zero”:

	 · “Replicate”:

	 · “Mirror”:

 ·  Or just ignore the “?” values and return a shorter vector :



	 Formal Convolution Definition
 ·  We’ve defined the convolution as:

 ·  In other classes you may see it defined as:

 ·  For simplicity we’re skipping the “reverse” step ,
  and assuming ‘w’ and ‘x’ are sampled at discrete points (not functions).
 ·  But keep this mind if you read about convolutions elsewhere.



	 1D Convolution Examples
 ·  Translation convolution shift signal:
	 – “What is my neighbour’s value?”



	 1D Convolution Examples
 ·  Averaging convolution (“general value of signal in this region?”)
	 – Less sensitive to noise (or spikes) than raw signal.



	 1D Convolution Examples
 ·  Laplacian convolution approximates second derivative:
	 – “Sum to zero” filters “respond” if input vector looks like the filter



	 1D Convolution Examples
 ·  Gaussian convolution (“blurring”):
	 – Compared to averaging it’s more smooth and maintains peaks better.
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	 1D Convolution Examples
 ·  Centered difference convolution approximates first derivative:
	 – Positive means change from low to high (negative means high to low).



	 1D Convolution Examples
 ·  Sharpen convolution enhances peaks.
	 – An “average” that places negative weights on the surrounding pixels.



	 Digression: Derivatives and Integrals
 ·  Numerical derivative approximations can be viewed as filters:
	 – Centered difference: [ - 1, 0, 1]
	 (like check_correctness in the homework code)

 ·  Numerical integration approximations can be viewed as filters:
	 – “Simpson’s” rule: [1/6, 4/6, 1/6] (a bit like Gaussian filter).

 ·  Derivative filters add to 0 , integration filters add to 1
	 – For constant function, derivative should be 0 and average = constant.  34



	 Laplacian of Gaussian Filter
 ·  Laplacian of Gaussian is a smoothed 2 nd-derivative approximation:



	 ·  3D and higher-order convolutions are defined similarly.

 https://towardsdatascience.com/intuitively-understanding-convolutions -for-deep-learning-1f6f42faee1

	 Images and Higher- Order Convolution
 ·  2D convolution:
	 – Signal ‘x’ is the pixel intensities in an ‘n’ by ‘n’ image.
	 – Filter ‘w’ is the pixel intensities in a ‘2m+1’ by ‘2m+1’ image.
 ·  The 2D convolution is given by:



 Image Convolution Examples
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	 http://setosa.io/ev/image -kernels
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We stopped here


