CPSC 340:
Machine Learning and Data Mining

Admin

Extra lecture (no guest lecture) to spend more time on deep learning +
convolutions

Please bring a laptop (or similar) Monday for evaluations

* The Faculty of Science requests we allocate class time to filling them
out

Windsor Tie

Anh Nguyen

Today
- One more dose of intuition for DNNs

- Finish discussion of how to train deep neural networks

— algorithms, tips, and tricks, and miscellaneous key info

Backpropagation

Overview of how we compute neural network gradient:

— Forward propagation :
- Compute zi () from Xi.

- Compute zi @) from zi).

- Compute Y _hati from zim), and use this to compute error.

— Backpropagation :

- Compute gradient with respect to regression weights ‘v’.
- Compute gradient with respect to zi m) weights Wm).

- Compute gradient with respect to zi m- 1) weights Wm-1).

- Compute gradient with respect to zi 1) weights Wq).

“Backpropagation” is the chain rule plus some bookkeeping for speed.

bonuls,(

Backpropagation

- Instead of the next few bonus slides, | HIGHLY recommend
watching this video from former UBC master’s student Andre;
Karpathy (of OpenAl, former director of Al and Autopilot Vision at Tesla)

— https://www.youtube.com/watch?v =1940vYbbnoo

Backpropagation Tv
h(;,®)
- Let’s 1llustrate backpropagation in a simple setting: l\-‘”
— 1 training example, 3 hidden layers, 1 hidden “unit” in layer. T\ o)
w
4(_\ (W(n) le) W(s’) V) - _l_ (>//\, _ y,-)Z wlr\tre_ 7//\i :VL\(W(?)L (W“)A(W(”)(‘,))) 1’1(24(2})
O f
A = hW® hw”h(w"x;))) = ¢ h(z*) Z
o) T AT e
28 = 0 uvh (W))W h ") =0 vh (2D h(z) flw
h(")
]

bomAS,(

Backpropagation

- Let’s 1llustrate backpropagation in a simple setting:

— 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

(02 = A 3 (2 ()
POV =2 (7 3)* whee =vh (Wb 4w)
2_{ ‘\(W(; l-\ m"\ W” f‘))::FMZ'B))

; ’ T)’/W L)
Zf. =0 Vl'\ (W2 h(W hw")N (W?h (W x)) =€ vh (z);\(z'tz))
ZW BT e)
(ka(2! (Wl')))) 137;‘ (W' h(w))MW("X = (3) WBA L (2))/‘((:,
\'_)/'*—‘/

mm = l"
\
2£ L‘(WMMWR)MW”)))Wﬂ)h (z;(w()))W‘”h (W%) - (1) Wu)h () X;

bonus,(

Backpropagation

- Let’s 1llustrate backpropagation in a simple setting:

— 1 training example, 3 hidden layers, 1 hidden “unit” in layer.
f e

< = r ;\(2,‘“)) g\fv - k(zilc”)
%(a) ¢ vh(m) h(z (2)) W(.‘) C h(;)) "\(z 2
%\/“’ = (3) W‘;)}\ ((z))u 0 af

2wl17 ——[(37 (ls‘) L {:(c”) }\ Y

cC

o (2) (J)k‘(- ’ 4 A]
Twl) W Z,)X, ZW(I) [i () ()]h(’éé)X
— Only the first ‘r’ changes if you use a different loss,
— With multiple hidden units, you get extra sumes.

ﬁ

- Efficient if you store the sums rather than computing from scratch.

Backpropagation

-+ We’ve made backprop details bonus material

- Do you need to know how to do this?

— Exact details are probably not vital (there are many implementations).
— “Automatic differentiation ” 1s now standard and has same cost.
— But understanding basic 1dea helps you know what can go wrong.

- Or give hints about what to do when you run out of memory.

— See discussion by a neural network expert (Andrej!)
- https://karpathy.medium.com/yes-you-should-understand-backprop-e2{06eab496b

(‘5,4 Andrej Karpathy H

ok e’
Z Dec 19,2016 - 7minread - @ Listen

Yes you should understand backprop

When we offered CS231n (Deep Learning class) at Stanford, we intentionally
designed the programming assignments to include explicit calculations

involved in backpropagation on the lowest level. The students had to

Backpropagation

- You should know cost of backpropagation:
— Forward pass dominated by matrix multiplications by W (1), W 2), W 3), and v
- If have ‘m’ weight layers and all zihave ‘k’ elements, cost would be O(dk + mk?2)

— Backward pass has same cost as forward pass

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

- —

output layer

AR,

EaS & &y
(bt)

Sl

..

Stochastic Gradient Training

- Standard training method is stochastic gradient (SG):

— Choose a random example ‘1’ (more common: mini-batch of samples)
— Use backpropagation to get gradient with respect to all parameters.

— Take a small step in the negative gradient direction.

- Challenging to make SG work:

— Often doesn’t work as a “black box™ learning algorithm.

— But people have developed a lot of tricks/modifications to make 1t work.

- Highly non- convex , so are the problem local minima?

— Some empirical/theoretical evidence that local minima are not the problem.

— If the network 1s “deep” and “wide” enough, we think all local minima are good.
— But 1t can be hard to get SG to close to a local minimum in reasonable time.

New Issue: Vanishing Gradients

Consider the sigmoid function:

Away from the origimn, the gnj’sadoioenut is nemarlln’oy zZero.
The problem gets worse when you take the sigmoid of a sigmoid:

In deep networks, many gradients can be nearly zero everywhere.
— And numerically they will be set to 0, so SGD does not move.

Rectified Linear Units (ReLU)

 Modern networks often replace sigmoid with perceptron loss (ReLU):
MO'x?O)Z,-(g

o
]4?’/’("-"()

—

* Just sets negative values z,. to zero.
— Reduces vanishing gradient problem (positive region is never flat).
— @Gives sparser activations.
— Still gives a universal approximator if size of hidden layers grows with ‘n’.

bomAS,(

“Swish” Activiation

- Recent work searched for “best” activation: ox?0y2;c §
/ I

-] derp(i)

—

-
- Found that z ic /(1+exp(-z ic)) worked best (“‘swish” function).

— A bit weird because it allows negative values and 1s non- monotonic.
— But basically the same as ReLU when not close to 0.

Skip Connections Deep Learning

e Skip connections can also reduce vanishing gradient problem:

* Makes “shortcuts” between layers (so fewer transformations).
— Many variations exist on skip connections exist.

ResNet “Blocks”

Residual networks (ResNets) are a variant on skip connections.

— Consist of repeated “blocks”, first methods that successfully used 100+ layers.

Usual computation of activation based on previous 2 layers:

O\M - h(WM L\(WLO\I))
A diadian ot ‘ayer ia

42 _ 4+l ! X
ResNet “block”: ol = L\(f/\l* (" 01)) i

— Adds activations from “2 layers ago”.

ide):tity zj
Differences from usual skip connections:

— Activations vectors a' and a"*? must have the same size.

— No weights on a', so W'and W"*! must focus on “updating” a' (fit “residual”).
* |If you use RelLU, then W'=0 implies a'*2=a.

Parameter Initialization

- Parameter 1nitialization is crucial:

— Can’t initialize weights 1in same layer to same value, or units will stay the same.

- Architecture 1s symmetric, so gradient would be the same for every hidden unit in the layer,
so they’d all just always stay doing the exact same thing.

— Can’t initialize weights too large, 1t will take too long to learn.
- A traditional random 1nitialization:

— Initialize bias variables to O.
— Sample from standard normal, divided by 105(0.00001* randn).

-w =.00001* randn(k,1)
— Performing multiple 1nitializations does not seem to be important
(except maybe with very small networks)

bomAS_(

Parameter Initialization

- Also common to transform data in various ways:
— Subtract mean, divide by standard deviation, “whiten”, standardize yi.

- More recent initializations try to standardize 1nitial zi:

— Use different 1nitialization in each layer.
— Try to make variance of zithe same across layers.

- Popular approach is to sample from standard normal, divide by sqrt(2* nlnputs).

— Use samples from uniform distribution on [- b,b], where

h= \6

r
W)

Setting the Step - Size

- Stochastic gradient 1s very sensitive to the step size in deep models.
- One approach: manual “babysitting” of the step-size.

— Run SG for a while with a fixed step- size.

— Occasionally measure error and plot progress:

ML\L\WH AC(ev\)c o(t
/ —9 decrenst O(t

I

Time

— If error 1s not decreasing, decrease step- size.

Cree~

—

—

Setting the Step - Size

- Stochastic gradient 1s very sensitive to the step size in deep models.
- Bias step -size multiplier : use bigger step-size for the bias variables.
- Momentum (stochastic version of “heavy-ball” algorithm):

— Add term that moves 1n previous direction:
| _ ¢ _
w' = Wt -~ L VE (w) + Bt (wf —wt)

= keep y‘mt,_fim the
— Usually B = 0.9. old direclion

Gradient Descent vs. Heavy- Ball Method

Gr‘ac[i{’/\‘f Meﬂ\ol Heqw/‘ba“ Meﬁ\pc(

0
w? ",

Gradient Descent vs. Heavy- Ball Method

Gracléf/\Jf Meﬂ\ol Heow\/*ba“ Method
w? w®
J W
3

Gradient Descent vs. Heavy- Ball Method

G(‘O\(:{i{’/\'i' Meﬂ\ol Heqv\/"ba“ Meﬁ\pc(

Gradient Descent vs. Heavy- Ball Method

G(‘O\(:{i{’/\'i' Meﬂ\ol Heqv\/"ba“ Meﬁ\pc(

Gradient Descent vs. Heavy- Ball Method

G(‘O\(:[i{’/\'i' Meﬂ\ol Heqv\/"ba“ Method

Gradient Descent vs. Heavy- Ball Method

G(‘O\(:[i{’/\'i' Meﬂ\ol Heqv\/"ba“ Method

Gradient Descent vs. Heavy- Ball Method

G(‘a(ii{’/\"' Meﬂ\ol Heqv\/"bau Method

Gradient Descent vs. Heavy- Ball Method

Gr\ac(if/\'} Meﬂ\ol Heqm/'lya” Meﬂwc(

w—o;d‘s {;Om lP\C_f g
oune
arOuWJ

Good demo to check out: https://distill.pub /2017/momentum/

bonus,(

Setting the Step - Size

- Automatic method to set step size is Bottou trick :

1. Grab a small set of training examples (maybe 5% of total).

2. Do a binary search for a step size that works well on them.

3. Use this step size for a long time (or slowly decrease it from there).

- Several recent methods using a step size for each variable :
— AdaGrad, RMSprop, Adam (often work better “out of the box™).

— Some controversy versus plain stochastic gradient (often with momentum).
- SGD can often get lower test error, even though it takes longer and requires more tuning of step- size. *

- Batch size (number of random examples) also influences results.
— Bigger batch sizes often give faster convergence but maybe to worse solutions?

- Another recent trick is batch normalization:
— Try to “standardize” the hidden units within the random samples as we go.
— Held as example of deep learning “alchemy (blog post here about deep learning claims).

- Sounds science - ey and often works, but little theoretical understanding.

Common Deep Learning Tricks

Data standardization (“centering” and “whitening”).

Parameter initialization: “small but different”.

— If we initialize all parameters in the layer to same value, they stay the same.
— Also common to use initializations that are standardized within layers.
Step-size selection: “babysitting”.

— Use bigger step-size for the bias variables, or different for each layer.
— Methods that use a step size for each coordinate (AdaGrad, RMSprop, Adam).

Early stopping of the optimization based on validation accuracy.
Momentum: adds weighted sum of previous SGD directions.
Batch normalization: adaptive standardizing within layers.

— Often allows sigmoid activations in deep networks.

Common Deep Learning Tricks

L2-regularization or L1-regularization (“weight decay”).
— Sometimes with different A for each layer.
— Recent work shows this can introduce bad local optima.

Dropout: randomly zeroes activations ‘z’ values to discourage dependence.
Rectified linear units (ReLU) as non-linear transformation.

*

— Makes objective non-differentiable, but we now know SGD still converges in this setting.

Residual/skip connections: connect layers to multiple previous layers.
— We now know that such connections make it more likely to converge to good minima.

Neural architecture search: try to cleverly search space of hyper-parameters.
— This gets expensive!
Some of these tricks are explored in bonus slides.

Missing Theory Behind Training Deep Networks

* Unfortunately, we do not understand many of these tricks very well.

— Large portion of theory is on degenerate case of linear neural networks.
e Or other weird cases like “1 hidden unit per layer”.

— A lot of research is performed using “grad student descent”.
e Several variations are tried, ones that perform well empirically are kept (possibly overfitting).

* Popular Examples:

— Batch normalization originally proposed to fix “internal covariate shift”.
* Internal covariate shift not defined in original paper, and batch norm does seem to reduce it.
— Often singled out as an example of problems with machine learning scholarship.
* Like many heuristics, people use batch norm because they found that it often helps.

— Many people have worked on better explanations.

— Adam optimizer is a nice combinations of ideas from several existing algorithms.
* Such as “momentum” and “AdaGrad”, both of which are well-understood theoretically.
— But theory in the original paper was incorrect, and Adam fails at solving some very-simple optimization problems.

e Butis Adam is often used because it is amazing at training some networks.
— It has been hypothesized that we “converged” towards networks that are easier for current SGD methods like Adam.

bo»’w\S,(

Autoencoders *

- Autoencoders are an unsupervised deep learning model:
— Use the inputs as the output of the neural network.

l encoder i der]

- oA 0
= O RCOHO =
) O
» ORS \v/’g

w1 W2 w2’ w1

— Middle layer could be latent features in non - linear latent-factor model.
- Can do outlier detection, data compression, visualization, etc.

— A non - linear generalization of PCA.
- Equivalent to PCA 1f you don’t have non- linearities .

-
.
. ~
.
. d
. ‘-..‘o.
o ¢ s -
. .
. . '
e ¢ o . ®
o e
e
-
L \. N
. . o
]
. a9
l,.. 1

https://www.cs.toronto.edu/~hinton/science.pdf

g - ' . : g . ..-. - “.. °
. s s, RS
Leading economic® =~ 3. "?)\ .« s A

bon (AS,[

Autoencoders e

AM"DQV\ Co J(/

European Community
Interbank markets monetary/economic

Disasters and
accidents

: ‘? ey ¥ o R“ Legaljudicial
A S
¥ Government
Accounts/ . 53 borrowings
eamings {

bon MS,[
Denoising Autoencoder e

- Denoising autoencoders add noise to the input:

encoder decoder

W1l w2 w2’ w1l

— Learns a model that can remove the noise.

Deep Learning Vocabulary

- “Deep learning”: Models with many hidden layers.
— Usually neural networks.
- “Neuron’: node 1n the neural network graph.

— “Visible unit ”; feature.
— “ Hidden unit : latent factor z. or h(z.).

- “Activation function’: non- linear transform.

- “Activation”: h(z).

- “Backpropagation”: compute gradient of neural network.

— Sometimes “backpropagation” means * training with SGD .

- “ Weight decay ”: L2- regularization.

- “Cross entropy ”: softmax loss.

- “Learning rate”: SGD step- size.

- “Learning rate decay ”’: using decreasing step- sizes.

- “ Vanishing/Exploding gradient ”: gradient becoming real small/big for deep net

Summary

- Backpropagation computes neural network gradient via chain rule.
- Parameter 1nitialization 1s crucial to neural net performance.

- Optimization and step size are crucial to neural net performance.

— “Babysitting”’, schedules, momentum.

- ReLU avoid “vanishing gradients”.

- Next: The most important idea in computer vision?

