
	 CPSC 340:
 Machine Learning and Data Mining
	 Deep Learning

	 Admin
• Extra lecture (no guest lecture) to spend more time on deep learning +

convolutions

• Please bring a laptop (or similar) Monday for evaluations

• The Faculty of Science requests we allocate class time to filling them
out

Windsor Tie

Anh Nguyen

	 Today
· One more dose of intuition for DNNs

 · Finish discussion of how to train deep neural networks
	 – algorithms, tips, and tricks, and miscellaneous key info

	 Backpropagation
 · Overview of how we compute neural network gradient:
	 – Forward propagation :
	 · Compute zi (1) from xi .
	 · Compute zi (2) from zi (1) .

	 · …
	 · Compute Y_hati from zi (m) , and use this to compute error.

	 – Backpropagation :
	 · Compute gradient with respect to regression weights ‘v’.
	 · Compute gradient with respect to zi (m) weights W(m) .
	 · Compute gradient with respect to zi (m - 1) weights W(m - 1) .

	 · …
	 · Compute gradient with respect to zi (1) weights W(1) .

 · “Backpropagation” is the chain rule plus some bookkeeping for speed.

	 Backpropagation
 · Instead of the next few bonus slides, I HIGHLY recommend
 watching this video from former UBC master’s student Andrej
 Karpathy (of OpenAI, former director of AI and Autopilot Vision at Tesla)
	 – https://www.youtube.com/watch?v =i94OvYb6noo

	 Backpropagation
 · Let’s illustrate backpropagation in a simple setting:
	 – 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

	 Backpropagation
 · Let’s illustrate backpropagation in a simple setting:
	 – 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

	 Backpropagation
 · Let’s illustrate backpropagation in a simple setting:
	 – 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

	 – Only the first ‘r’ changes if you use a different loss.
	 – With multiple hidden units, you get extra sums.
	 · Efficient if you store the sums rather than computing from scratch.

	 Backpropagation
 · We’ve made backprop details bonus material
 · Do you need to know how to do this?
	 – Exact details are probably not vital (there are many implementations).
	 – “Automatic differentiation ” is now standard and has same cost.
	 – But understanding basic idea helps you know what can go wrong.
	 · Or give hints about what to do when you run out of memory.
	 – See discussion by a neural network expert (Andrej!)

- https://karpathy.medium.com/yes-you-should-understand-backprop-e2f06eab496b

	 Backpropagation

 · You should know cost of backpropagation:
	 – Forward pass dominated by matrix multiplications by W (1) , W (2) , W (3) , and v
	 · If have ‘m’ weight layers and all zi have ‘k’ elements, cost would be O(dk + mk2)

	 – Backward pass has same cost as forward pass

	 Stochastic Gradient Training
 · Standard training method is stochastic gradient (SG):
	 – Choose a random example ‘i ’ (more common: mini-batch of samples)
	 – Use backpropagation to get gradient with respect to all parameters.
	 – Take a small step in the negative gradient direction.
 · Challenging to make SG work:
	 – Often doesn’t work as a “black box” learning algorithm.
	 – But people have developed a lot of tricks/modifications to make it work.

 · Highly non- convex , so are the problem local minima?
	 – Some empirical/theoretical evidence that local minima are not the problem.
	 – If the network is “deep” and “wide” enough, we think all local minima are good.
	 – But it can be hard to get SG to close to a local minimum in reasonable time.

New Issue: Vanishing Gradients
• Consider the sigmoid function:

• Away from the origin, the gradient is nearly zero.
• The problem gets worse when you take the sigmoid of a sigmoid:

• In deep networks, many gradients can be nearly zero everywhere.
– And numerically they will be set to 0, so SGD does not move.

Rectified Linear Units (ReLU)
• Modern networks often replace sigmoid with perceptron loss (ReLU):

• Just sets negative values zic to zero.
– Reduces vanishing gradient problem (positive region is never flat).
– Gives sparser activations.
– Still gives a universal approximator if size of hidden layers grows with ‘n’.

	 “Swish” Activiation
 · Recent work searched for “best” activation:

 · Found that z ic /(1+exp(-z ic)) worked best (“swish” function).
	 – A bit weird because it allows negative values and is non- monotonic.
	 – But basically the same as ReLU when not close to 0.

Skip Connections Deep Learning
• Skip connections can also reduce vanishing gradient problem:

• Makes “shortcuts” between layers (so fewer transformations).
– Many variations exist on skip connections exist.

ResNet “Blocks”
• Residual networks (ResNets) are a variant on skip connections.
– Consist of repeated “blocks”, first methods that successfully used 100+ layers.

• Usual computation of activation based on previous 2 layers:

• ResNet “block”:
– Adds activations from “2 layers ago”.

• Differences from usual skip connections:
– Activations vectors al and al+2 must have the same size.
– No weights on al, so Wl and Wl+1 must focus on “updating” al (fit “residual”).

• If you use ReLU, then Wl=0 implies al+2=al.
https://en.wikipedia.org/wiki/Residual_neural_network
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035

	 Parameter Initialization
 · Parameter initialization is crucial:
	 – Can’t initialize weights in same layer to same value, or units will stay the same.
	 · Architecture is symmetric, so gradient would be the same for every hidden unit in the layer,
	 so they’d all just always stay doing the exact same thing.
	 – Can’t initialize weights too large, it will take too long to learn.
 · A traditional random initialization:
	 – Initialize bias variables to 0.
	 – Sample from standard normal, divided by 105 (0.00001* randn).
	 · w = .00001* randn(k,1)
	 – Performing multiple initializations does not seem to be important
	 (except maybe with very small networks)

	 Parameter Initialization

 · Also common to transform data in various ways:
	 – Subtract mean, divide by standard deviation, “whiten”, standardize yi .
 · More recent initializations try to standardize initial zi :
	 – Use different initialization in each layer.
	 – Try to make variance of zi the same across layers.
	 · Popular approach is to sample from standard normal, divide by sqrt(2* nInputs).

	 – Use samples from uniform distribution on [- b,b], where

	 Setting the Step - Size
 · Stochastic gradient is very sensitive to the step size in deep models.
 · One approach: manual “babysitting” of the step-size.
	 – Run SG for a while with a fixed step- size.
	 – Occasionally measure error and plot progress:

	 – If error is not decreasing, decrease step- size.

	 Setting the Step - Size
 · Stochastic gradient is very sensitive to the step size in deep models.
 · Bias step -size multiplier : use bigger step-size for the bias variables.
 · Momentum (stochastic version of “heavy-ball” algorithm):
	 – Add term that moves in previous direction:

	 – Usually β t = 0.9.

 Gradient Descent vs. Heavy- Ball Method

 Gradient Descent vs. Heavy- Ball Method

 Gradient Descent vs. Heavy- Ball Method

 Gradient Descent vs. Heavy- Ball Method

 Gradient Descent vs. Heavy- Ball Method

 Gradient Descent vs. Heavy- Ball Method

 Gradient Descent vs. Heavy- Ball Method

	 Gradient Descent vs. Heavy- Ball Method

 Good demo to check out: https://distill.pub /2017/momentum/

	 Setting the Step - Size
 · Automatic method to set step size is Bottou trick :
	 1.	 Grab a small set of training examples (maybe 5% of total).

 2.	 Do a binary search for a step size that works well on them.
 3.	 Use this step size for a long time (or slowly decrease it from there).

 · Several recent methods using a step size for each variable :
	 – AdaGrad, RMSprop, Adam (often work better “out of the box”).
	 – Some controversy versus plain stochastic gradient (often with momentum).
	 · SGD can often get lower test error, even though it takes longer and requires more tuning of step- size.
 · Batch size (number of random examples) also influences results.
	 – Bigger batch sizes often give faster convergence but maybe to worse solutions?

 · Another recent trick is batch normalization:
	 – Try to “standardize” the hidden units within the random samples as we go.
	 – Held as example of deep learning “alchemy ” (blog post here about deep learning claims).
	 · Sounds science - ey and often works, but little theoretical understanding.

Common Deep Learning Tricks
• Data standardization (“centering” and “whitening”).
• Parameter initialization: “small but different“.
– If we initialize all parameters in the layer to same value, they stay the same.
– Also common to use initializations that are standardized within layers.

• Step-size selection: “babysitting“.
– Use bigger step-size for the bias variables, or different for each layer.
– Methods that use a step size for each coordinate (AdaGrad, RMSprop, Adam).

• Early stopping of the optimization based on validation accuracy.
• Momentum: adds weighted sum of previous SGD directions.
• Batch normalization: adaptive standardizing within layers.
– Often allows sigmoid activations in deep networks.

Common Deep Learning Tricks
• L2-regularization or L1-regularization (“weight decay”).

– Sometimes with different ! for each layer.
– Recent work shows this can introduce bad local optima.

• Dropout: randomly zeroes activations ‘z’ values to discourage dependence.
• Rectified linear units (ReLU) as non-linear transformation.

– Makes objective non-differentiable, but we now know SGD still converges in this setting.
• Residual/skip connections: connect layers to multiple previous layers.

– We now know that such connections make it more likely to converge to good minima.
• Neural architecture search: try to cleverly search space of hyper-parameters.

– This gets expensive!
• Some of these tricks are explored in bonus slides.

Missing Theory Behind Training Deep Networks
• Unfortunately, we do not understand many of these tricks very well.

– Large portion of theory is on degenerate case of linear neural networks.
• Or other weird cases like “1 hidden unit per layer”.

– A lot of research is performed using “grad student descent”.
• Several variations are tried, ones that perform well empirically are kept (possibly overfitting).

• Popular Examples:
– Batch normalization originally proposed to fix “internal covariate shift”.

• Internal covariate shift not defined in original paper, and batch norm does seem to reduce it.
– Often singled out as an example of problems with machine learning scholarship.

• Like many heuristics, people use batch norm because they found that it often helps.
– Many people have worked on better explanations.

– Adam optimizer is a nice combinations of ideas from several existing algorithms.
• Such as “momentum” and “AdaGrad”, both of which are well-understood theoretically.

– But theory in the original paper was incorrect, and Adam fails at solving some very-simple optimization problems.
• But is Adam is often used because it is amazing at training some networks.

– It has been hypothesized that we “converged” towards networks that are easier for current SGD methods like Adam.

	 Autoencoders
	 · Autoencoders are an unsupervised deep learning model:
	 – Use the inputs as the output of the neural network.

	 – Middle layer could be latent features in non - linear latent-factor model.
	 · Can do outlier detection, data compression, visualization, etc.
	 – A non - linear generalization of PCA.
	 · Equivalent to PCA if you don’t have non- linearities .
 http://inspirehep.net/record/1252540/plots

 Autoencoders

 https://www.cs.toronto.edu/~hinton/science.pdf

	 Denoising Autoencoder
	 · Denoising autoencoders add noise to the input:

	 – Learns a model that can remove the noise.

 http://inspirehep.net/record/1252540/plots

	 Deep Learning Vocabulary
 · “Deep learning”: Models with many hidden layers.
	 – Usually neural networks.
 · “Neuron”: node in the neural network graph.
	 – “ Visible unit ”: feature.
	 – “ Hidden unit ”: latent factor zic or h(zic).
 · “Activation function”: non- linear transform.
 · “Activation”: h(zi).
 · “Backpropagation”: compute gradient of neural network.
	 – Sometimes “backpropagation” means “ training with SGD ”.
 · “ Weight decay ”: L2- regularization.
 · “Cross entropy ”: softmax loss.
 · “Learning rate”: SGD step- size.
 · “Learning rate decay ”: using decreasing step- sizes.
 · “ Vanishing/Exploding gradient ”: gradient becoming real small/big for deep net

	 Summary

 · Backpropagation computes neural network gradient via chain rule.
 · Parameter initialization is crucial to neural net performance.
 · Optimization and step size are crucial to neural net performance.
	 – “Babysitting”, schedules, momentum.
 · ReLU avoid “vanishing gradients”.

 · Next: The most important idea in computer vision?

