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	                  Admin
• Extra lecture (no guest lecture) to spend more time on deep learning + 

convolutions 

• Please bring a laptop (or similar) Monday for evaluations 

• The Faculty of Science requests we allocate class time to filling them 
out



Windsor Tie

Anh Nguyen



	                  Today
·  One more dose of intuition for DNNs 

 · Finish discussion of how to train deep neural networks
	 – algorithms, tips, and tricks, and miscellaneous key info



	 Backpropagation
 ·  Overview of how we compute neural network gradient:
	 – Forward propagation :
	 ·  Compute zi (1) from xi .
	 ·  Compute zi (2) from zi (1) .

	 ·  …
	 ·  Compute Y_hati from zi (m) , and use this to compute error.

	 – Backpropagation :
	 ·  Compute gradient with respect to regression weights ‘v’.
	 ·  Compute gradient with respect to zi (m) weights W(m) .
	 ·  Compute gradient with respect to zi (m - 1) weights W(m - 1) .

	 ·  …
	 ·  Compute gradient with respect to zi (1) weights W(1) .

 ·  “Backpropagation” is the chain rule plus some bookkeeping for speed.



	 Backpropagation
 ·  Instead of the next few bonus slides, I HIGHLY recommend
  watching this video from former UBC master’s student Andrej
  Karpathy (of OpenAI, former director of AI and Autopilot Vision at Tesla)
	 – https://www.youtube.com/watch?v =i94OvYb6noo



	 Backpropagation
 ·  Let’s illustrate backpropagation in a simple setting:
	 – 1 training example, 3 hidden layers, 1 hidden “unit” in layer.
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	 Backpropagation
 ·  Let’s illustrate backpropagation in a simple setting:
	 – 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

	 – Only the first ‘r’ changes if you use a different loss.
	 – With multiple hidden units, you get extra sums.
	 · Efficient if you store the sums rather than computing from scratch.



	 Backpropagation
 ·  We’ve made backprop details bonus material 
 ·  Do you need to know how to do this?
	 – Exact details are probably not vital (there are many implementations).
	 – “Automatic differentiation ” is now standard and has same cost.
	 – But understanding basic idea helps you know what can go wrong.
	 ·  Or give hints about what to do when you run out of memory.
	 – See discussion by a neural network expert (Andrej!) 

- https://karpathy.medium.com/yes-you-should-understand-backprop-e2f06eab496b 



	 Backpropagation
 

 ·  You should know cost of backpropagation:
	 – Forward pass dominated by matrix multiplications by W (1) , W (2) , W (3) , and v
	 ·  If have ‘m’ weight layers and all zi have ‘k’ elements, cost would be O( dk + mk2) 

	 – Backward pass has same cost as forward pass



	 Stochastic Gradient Training
 ·  Standard training method is stochastic gradient (SG):
	 – Choose a random example ‘i ’ (more common: mini-batch of samples)
	 – Use backpropagation to get gradient with respect to all parameters.
	 – Take a small step in the negative gradient direction.
 ·  Challenging to make SG work:
	 – Often doesn’t work as a “black box” learning algorithm.
	 – But people have developed a lot of tricks/modifications to make it work.

 ·  Highly non- convex , so are the problem local minima?
	 – Some empirical/theoretical evidence that local minima are not the problem.
	 – If the network is “deep” and “wide” enough, we think all local minima are good.
	 – But it can be hard to get SG to close to a local minimum in reasonable time.



New Issue: Vanishing Gradients
• Consider the sigmoid function:

• Away from the origin, the gradient is nearly zero.
• The problem gets worse when you take the sigmoid of a sigmoid:

• In deep networks, many gradients can be nearly zero everywhere.
– And numerically they will be set to 0, so SGD does not move.



Rectified Linear Units (ReLU)
• Modern networks often replace sigmoid with perceptron loss (ReLU):

• Just sets negative values zic to zero.
– Reduces vanishing gradient problem (positive region is never flat).
– Gives sparser activations.
– Still gives a universal approximator if size of hidden layers grows with ‘n’.



	 “Swish” Activiation
 ·  Recent work searched for “best” activation:

 ·  Found that z ic /(1+exp( -z ic )) worked best (“swish” function).
	 – A bit weird because it allows negative values and is non- monotonic.
	 – But basically the same as ReLU when not close to 0.



Skip Connections Deep Learning
• Skip connections can also reduce vanishing gradient problem:

• Makes “shortcuts” between layers (so fewer transformations).
– Many variations exist on skip connections exist.



ResNet “Blocks”
• Residual networks (ResNets) are a variant on skip connections.
– Consist of repeated “blocks”, first methods that successfully used 100+ layers.

• Usual computation of activation based on previous 2 layers:

• ResNet “block”:
– Adds activations from “2 layers ago”.

• Differences from usual skip connections:
– Activations vectors al and al+2 must have the same size.
– No weights on al, so Wl and Wl+1 must focus on “updating” al (fit “residual”).

• If you use ReLU, then Wl=0 implies al+2=al.
https://en.wikipedia.org/wiki/Residual_neural_network
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035



	 Parameter Initialization
 ·  Parameter initialization is crucial:
	 – Can’t initialize weights in same layer to same value, or units will stay the same.
	 · Architecture is symmetric, so gradient would be the same for every hidden unit in the layer,
	 so they’d all just always stay doing the exact same thing.
	 – Can’t initialize weights too large, it will take too long to learn.
 ·  A traditional random initialization:
	 – Initialize bias variables to 0.
	 – Sample from standard normal, divided by 105 (0.00001* randn).
	 · w = .00001* randn(k,1)
	 – Performing multiple initializations does not seem to be important
	 (except maybe with very small networks)



	 Parameter Initialization

 ·  Also common to transform data in various ways:
	 – Subtract mean, divide by standard deviation, “whiten”, standardize yi .
 ·  More recent initializations try to standardize initial zi :
	 – Use different initialization in each layer.
	 – Try to make variance of zi the same across layers.
	 · Popular approach is to sample from standard normal, divide by sqrt(2* nInputs ).

	 – Use samples from uniform distribution on [ - b,b], where



	 Setting the Step - Size
 ·  Stochastic gradient is very sensitive to the step size in deep models.
 ·  One approach: manual “babysitting” of the step-size.
	 – Run SG for a while with a fixed step- size.
	 – Occasionally measure error and plot progress:

	 – If error is not decreasing, decrease step- size.



	 Setting the Step - Size
 ·  Stochastic gradient is very sensitive to the step size in deep models.
 ·  Bias step -size multiplier : use bigger step-size for the bias variables.
 ·  Momentum (stochastic version of “heavy-ball” algorithm):
	 – Add term that moves in previous direction:

	 – Usually β t = 0.9.
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	 Gradient Descent vs. Heavy- Ball Method

 Good demo to check out: https://distill.pub /2017/momentum/



	 Setting the Step - Size
 ·  Automatic method to set step size is Bottou trick :
	 1.	 Grab a small set of training examples (maybe 5% of total).

 2.	 Do a binary search for a step size that works well on them.
 3.	 Use this step size for a long time (or slowly decrease it from there).

 ·  Several recent methods using a step size for each variable :
	 –  AdaGrad, RMSprop, Adam (often work better “out of the box”).
	 –  Some controversy versus plain stochastic gradient (often with momentum).
	 ·  SGD can often get lower test error, even though it takes longer and requires more tuning of step- size.
 ·  Batch size (number of random examples) also influences results.
	 –  Bigger batch sizes often give faster convergence but maybe to worse solutions?

 ·  Another recent trick is batch normalization:
	 –  Try to “standardize” the hidden units within the random samples as we go.
	 –  Held as example of deep learning “alchemy ” (blog post here about deep learning claims).
	 ·  Sounds science - ey and often works, but little theoretical understanding.



Common Deep Learning Tricks
• Data standardization (“centering” and “whitening”).
• Parameter initialization: “small but different“.
– If we initialize all parameters in the layer to same value, they stay the same.
– Also common to use initializations that are standardized within layers.

• Step-size selection: “babysitting“.
– Use bigger step-size for the bias variables, or different for each layer.
– Methods that use a step size for each coordinate (AdaGrad, RMSprop, Adam).

• Early stopping of the optimization based on validation accuracy.
• Momentum: adds weighted sum of previous SGD directions.
• Batch normalization: adaptive standardizing within layers.
– Often allows sigmoid activations in deep networks.



Common Deep Learning Tricks
• L2-regularization or L1-regularization (“weight decay”).

– Sometimes with different ! for each layer.
– Recent work shows this can introduce bad local optima.

• Dropout: randomly zeroes activations ‘z’ values to discourage dependence.
• Rectified linear units (ReLU) as non-linear transformation.

– Makes objective non-differentiable, but we now know SGD still converges in this setting.
• Residual/skip connections: connect layers to multiple previous layers.

– We now know that such connections make it more likely to converge to good minima.
• Neural architecture search: try to cleverly search space of hyper-parameters.

– This gets expensive!
• Some of these tricks are explored in bonus slides.



Missing Theory Behind Training Deep Networks
• Unfortunately, we do not understand many of these tricks very well.

– Large portion of theory is on degenerate case of  linear neural networks.
• Or other weird cases like “1 hidden unit per layer”.

– A lot of research is performed using “grad student descent”.
• Several variations are tried, ones that perform well empirically are kept (possibly overfitting).

• Popular Examples:
– Batch normalization originally proposed to fix “internal covariate shift”.

• Internal covariate shift not defined in original paper, and batch norm does seem to reduce it.
– Often singled out as an example of problems with machine learning scholarship.

• Like many heuristics, people use batch norm because they found that it often helps.
– Many people have worked on better explanations.

– Adam optimizer is a nice combinations of ideas from several existing algorithms.
• Such as “momentum” and “AdaGrad”, both of which are well-understood theoretically.

– But theory in the original paper was incorrect, and Adam fails at solving some very-simple optimization problems.
• But is Adam is often used because it is amazing at training some networks. 

– It has been hypothesized that we “converged” towards networks that are easier for current SGD methods like Adam.



	 Autoencoders
	 ·  Autoencoders are an unsupervised deep learning model:
	 – Use the inputs as the output of the neural network.

	 – Middle layer could be latent features in non - linear latent-factor model.
	 ·  Can do outlier detection, data compression, visualization, etc.
	 – A non - linear generalization of PCA.
	 ·  Equivalent to PCA if you don’t have non- linearities .
 http://inspirehep.net/record/1252540/plots



 Autoencoders

 https://www.cs.toronto.edu/~hinton/science.pdf



	 Denoising Autoencoder
	 ·  Denoising autoencoders add noise to the input:

	 – Learns a model that can remove the noise.

 http://inspirehep.net/record/1252540/plots



	 Deep Learning Vocabulary
 ·  “Deep learning”: Models with many hidden layers.
	 – Usually neural networks.
 ·  “Neuron”: node in the neural network graph.
	 – “ Visible unit ”: feature.
	 – “ Hidden unit ”: latent factor zic or h(zic).
 ·  “Activation function”: non- linear transform.
 ·  “Activation”: h(zi ).
 ·  “Backpropagation”: compute gradient of neural network.
	 – Sometimes “backpropagation” means “ training with SGD ”.
 ·  “ Weight decay ”: L2- regularization.
 ·  “Cross entropy ”: softmax loss.
 ·  “Learning rate”: SGD step- size.
 ·  “Learning rate decay ”: using decreasing step- sizes.
 ·  “ Vanishing/Exploding gradient ”: gradient becoming real small/big for deep net



	 Summary

 ·  Backpropagation computes neural network gradient via chain rule.
 ·  Parameter initialization is crucial to neural net performance.
 ·  Optimization and step size are crucial to neural net performance.
	 – “Babysitting”, schedules, momentum.
 ·  ReLU avoid “vanishing gradients”.

 ·  Next: The most important idea in computer vision?


