CPSC 340:
Machine Learning and Data Mining

Last Time: Neural Networks

Neural networks with one hidden layer:

— Learn features and a classifier at the same time.
— Qutput is two Iinear transformations (W, v), separated by non-linearity (h):

NW x) Cg @— @

/ @ —— @ D,
s'h“:(;,'::h;::m "nm/lvwm#::(‘ Wndm (CE)) & @

eﬂ‘\zg

— Linear classification/regression using non-linearly transformed latent features z,.
— Optimize logistic/softmax loss (classification) or squared error loss (regression)

using SGD: .
12 (-5 % Il oy bW

(regre'ssion) (binary cIaSS|f|cat|on)

Is Training Neural Networks Scary?

* Learning:
— For binary classification, the NLL under the sigmoid likelihood is:

{(Wv} Z '0 ({+er (M VTA(WX))> Joss
& ’ W/ "

* With ‘W’ fixed this is convex, but with both ‘W’ and ‘v’ as variables it is non-convex.
* And finding the global optimum is NP-hard in general.

— Nearly-always trained with variations on stochastic gradient descent (SGD).

W/("/ — W/r /«V {w
s 4 Naiin
k' o g '(\7 1"\(’(” ::,4‘9 6*%'/4 <hos,
\V v d/er af v condmg

* Many variations exist (with ”momentum” AdaGrad Adam (173k cites), AdamW, and so on).
e But SGD is not guaranteed to reach a global minimum for non-convex problems.

* |s non-convexity a big drawback compared to logistic regression?
— And if 'k’ is large, is this likely to overfit?

Neural Networks = Logistic Regression

e Consider a neural network with one hidden layer and connections from input to output layer.
— The extra connections are called “skip” connections.

]
0=w'x + v h(Wx)
L

| ines

W\uk{ Newral ﬂﬂq/l,o/l’

* You could first set v=0, then optimize ‘W’ using logistic regression.
— This is a convex optimization problem that gives you the logistic regression model.
* You could then set ‘W’ and ‘v’ to small random values, and start SGD from the logistic regression model.

— And if you are worried about overfitting, you could use early stopping based on validation set.
— Even though this is non-convex, the neural network can only improve on logistic regression.

* In practice, we typically optimize everything at once (which usually works better than the above).

“Hidden” Regularization in Neural Networks

* Fitting neural network with one hidden layer (SGD, no regularization):

MNIST CIFAR-10
——— — 0.7 —— ———
0.06f —Training i —Training
—Test (at convergence) 0.6 —Test (at convergence)
0.05¢ |
0.5¢]
0.04} 1
§ § 0.4r
[0.03 5 o8l
0.02f 0.2
0.01¢ 0.1
94 8 16 32 64 128 256 512 1K 2K 4K 92 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

* On each step of the x-axis, the network is re-trained from scratch.
* Training error goes to O with enough units: we’re finding a global min.
 What should happen to test error as we increase size of hidden layer?

“Hidden” Regularization in Neural Networks

* Fitting neural network with one hidden layer (SGD, no regularization):

MNIST CIFAR-10
0.06} —Training H —Training
—Test (at convergence) 0.6! —Test (at convergence)
0.05¢ |
0.5f]

4 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

e Test error continues to go down!?! Where is fundamental trade-off??
— It is still fundamental, but trade-off focuses on the “worst” global minimum.

* There do exist global mins with large #hidden units have test error = 1.
— But among the global minima, SGD is somehow converging to “good” ones.

Multiple Global Minima?

e For standard objectives, there is a global min function value f*:

Tedin error
AN{i14

Multiple Global Minima?

e For standard objectives, there is a global min function value f*:

Train error
AN{i14

/___’ 3‘0':"4' th?"‘\

aaN

Paﬁmdo(

e But this may be achieved by many different parameter values.

Multiple Global Minima?

AN{i14

Paf ametec

* These training error “global minima” may have very-different test errors.
 Some of these global minima may be more “regularized” than others.

Implicit Regularization of SGD

* There is empirical evidence SGD finds regularized parameters.

— We call this the “implicit regularization” of the optimization algorithm, a
new concept/phenomenon observed in the deep learning era.

* Beyond empirical evidence, we know this happens in simpler cases.

* An example of provable implicit regularization:

— Consider a least squares problem where there exists a ‘w’” where Xw=y.
* Residuals are all zero and we fit the data exactly for some ‘w’.
— You run gradient descent or SGD starting from w=0.

— Converges to solution Xw=y that has the minimum L2-norm.
e So using SGD is like using L2-regularization, but regularization is “implicit”.

Implicit Regularization of SGD

* Another example of provable implicit regularization:

— Consider a logistic regression problem where data is linearly separable.
* Alinear model can perfectly separate the data.
— You run gradient descent from any starting point.

— Converges to max-margin solution of the problem (minimum L2-norm solution).
* So using gradient descent is equivalent to encouraging large margin.

— fer'rcd' classifier wilh M imym v ;.,"
\ (larget dforce to cloest example)

X;z
Ooo
AKX °o°6
x‘x::(0 0Oo,
XX 0000
X axx X ©
¥ Xt

* Related implicit regularization results are known for
boosting, matrix factorization, and linear neural networks.

Implicit Regularization of SGD Examples

.
*raa

CIFAR-10
= |r=0.1 - 0.01
= |r =0.01
&k training
100 125 150 175 200

Test Error

200

175 1
150 A
125 4
100 A
0.75 1

0.50 1
0.25 A1

Quadratically Parameterized Model

0.00

- test error, init.=0.1

=== training error, init.=0.1
test error, init.=0.001
training error, init.=0.001

200 400 600 800 1000

Different global minima have vastly different test errors

Next Topic: Double Descent Phenomenon

Double Descent Curves

Expected

0.7 (Classical Statistics)

. A

S 06 '

L]

-

‘o 0.5

|_

~

= 0.4 ~

}9 Reality _\—\
0.3 o —
0.2

1 10 20 30 40 50

Model Size (ResNet18 Width)
* What is going on???

Worst vs. Best “Global Minimum”

"pg‘f evror (wdrs’, 9’0‘»,,’ Min)

Crror

"’(‘aiw errol

| —

Model size

Worst vs. Best “Global Minimum”

‘tpg‘f Cvror (WWS’, 9’0‘\,,’ Min)
5
e X
0 fx
4
K‘xX&
error YRS,
KA
KRR KX
XX AX
R Ky ;3;
| "'raiw errol

_—

Mode size

* Learning theory (trade-off) results analyze global min with worst test error.
— Actual test error for different global minima will be better than worst case bound.
— Theory is correct, but maybe “worst overfitting possible” is too pessimistic?

Worst vs. Best “Global Minimum”

105‘, Cvror (wdfs‘, 9,0‘\,,’ Min)

o~y

e’ e

Crror

g

q' wm N
of (la""" c’\ol’

r

x&&*»—\agh.)sk
2% 3K 3¢ e 3¢ D Mg e3¢ 2 ¢
>
>

>R
K 9.3 X}

Model size

* Consider instead the global min with best test error.

— With small models, “minimize training error” leads to unique (or similar) global mins.

— With larger models, there is a lot of flexibility in the space of global mins (gap between best/worst).
Gap between “worst” and “best” global min can grow with model complexity.

Worst vs. Best “Global Minimum”

105‘, Cvror (wdfs‘, 9,0‘\,,’ Min)

o~y

e’ e

Crror

g

ql wm N
of “0""" c’\ol’

r

x&&*»AAaAA*
U 3K 30 3 D Mg 2 ¢
>
>

>R
K 9.3 X}

Model size

Can get “double descent” curve in practice if parameters roughly track “best” global min shape.
— One way to do this: increase regularization as you increase model size.

Maybe “neural network trained with SGD” has “more implicit regularization for bigger models”?
— But “double descent” is not specific to implicit regularization of SGD and not specific to neural networks.

=
o

o
0

test error

o
N

o
o

Double Descent on a Linear Least Squares Problem

* Fitting least squares with gradient descent (n=500):

test error vs. # params

o
o

o
~

0

250 500 750 1000
parameters

test error

=
o

o
0

o
o

o
I

o
N

o
o

Double Descent on a Linear Least Squares Problem

test error vs. # params norm vs. # params

40
30
£
C
101
0 250 500 750 1000 00 260 460 600 800 1000
parameters # parameters

* ||w]|| increases until you fit data exactly (only one ‘w’ fits exactly).

 Then norm of parameters starts decreasing (many ‘w’ can fit exactly).
— So implicit regularization of gradient descent gives lower norm ‘w’ values.

=
o

o
0

test error

0.0

Double Descent on a Linear Least Squares Problem

test error vs. # params norm vs. # params

o
o

o
I

40
301
S
£ 20 2
(V)]
9
101
0 250 500 750 1000 00 260 460 600 800 1000

parameters # parameters

 We see fundamental trade-off if we plot error vs. norm.

test error vs. norm

o
o)

o
o

o
I

o
N

o
o

20 30

norm

0 10 40

— After we have fit data exactly, models are less “complicated” as we add more parameters.
* Can also make double descent curves by increasing explicit regularization.

* Under right conditions, can see double descent in other models like random forests.

parameters

1000

800

600

400

200

Implicit Regularization of SGD for Neural Networks

* For neural networks, why would
SGD implicit regularization increase with number of hidden units?

— Similar to least squares, maybe SGD finds low-norm solutions?
* In higher-dimensions, there is flexibility in global mins to have a low norm?

— Maybe SGD stays closer to starting point as we increase dimension?
* This would be more like a regularizer of the form | |w —w?°]|.

2.0

1.5

1.0

0.5

0.0

Training loss

—— Width 10
Width 100
—— Width 1000

Relative change in norm of weights from initialization

—— Width 10
Width 100
—— Width 1000

Over-Parameterization and SGD

* Over-parameterized model:

— A model that has more parameters than needed to fit data exactly.

* Amazing properties of SGD for many over-parameterized models:
— SGD tends to find a global minimum of training error.
— SGD tends to have implicit regularization.
— SGD converges with a constant step size.

* At nearly the speed of gradient descent.

* Why can SGD converge with a constant step size?
— Variation in gradients is O at solutions that fit all training examples.

* No “region of confusion”.

Over-Parameterization and SGD

Gradient descent vs. SGD for under/over-parameterized least squares:

Underparametrized Overparametrized

102 102

— GD

SGD (decreasing)
— 5GD (constant)

101E

100 E

Function value

10_1?

1 1] 10_2 1 || 1
0 100 200 300 400 0 100 200 300 400
Gradient evaluations Gradient evaluations

— No need to decrease step sizes or increase batch sizes for over-parameterized.

* And nice ways to set the step size as you go (“painless SGD”, “Polyak step size”).

— Still expect good performance if you are close to being over-parameterized.

Next Topic: Deep Learning

Deep Learning (As a Picture)

* Deep learning models have more than one hidden layer:

Zl'l
Xs
Ziy) 0.
e /___/9
13 ‘
“(; p wlpy oo
-wa” layer Hidden]a)ef | Midder '7Jr 4 v ﬂ /

* We apply linear transformation and activation function at each “layer”.

Deep Learning (As a Function)

Linear wodel

Oi r— W-l)(i A/Cur.'l l\p?lwufl(vfﬁ\ q Al‘/‘/v\ "l)/-l/r.'
. ')
/\/Cural nePwork wiln | hidden la)let" i - V'T L\(WWMW(” l\(w(ﬂt\ (W‘ X))))
Q=" .
i=Vv h(%7 'r\/ﬁ\ ‘m quus w ¢ (,dvn/J “se

NQV\(“\ ne*wo(kZiw:T(«\ 2 hidden layers.’ O — T (T L\(Wd))q)>
O= v k(ka(Ww))
\/@’U Y’\Lo I WC

2

Newd Neluack wiln 3 hidden |ayers /_V\ﬁf'ﬂ'_gt Fook o fye o Bef o 1)
0. = v hOwh(w®” h(w")

\/-/'l(/-)\l_J r i .—“
3 < L L @ =T ko s
2/\‘ ~ " VA MiSsing | -

Notation Warning: “Number of Layers”

* |n this class, we say that the network below has “2 hidden layers”:
— Number of intermediate hidden unit groups is number of “layers”.

! . wlpul loger
Topt Ly Hiddea layer | Midhe ey 3 Octpt Leye
* Caution: exist other ways of counting the number of “layers”.

— Some sources would refer to the above as a 3-layer neural network.

* They count the number of linear transformations we do.
* So network with 1 hidden layer would be a “2-layer” network, and linear models are “1-layer networks”.

Prediction with Deep Neural Networks

* The “textbook” choice for deep neural networks:
— Alternate between doing linear transformations and non-linear transforms.

Oi _ V’(L\(Ww;l’\(w(?) l\(w(ﬂlﬁ(ww)ﬁ))))

— Each “layer” might have a different size.

e Wlisk!xd z[1] = W1*x
W2 !S kzxki for layer in 2:nLayers
. W3 :: k3§k2. z[layer] = Wm[layer-1]*h(z[layer-1])
.« Wiskéx k3 |
e visk?x1 yhat = v'*h(z[end])

— We may use the same non-linear transform, such as sigmoid, at each layer.

— Cost for prediction, which is called “forward propagation”:
 Cost of the matrix multiplies: O(k*d + k?k* + k3k? + k*k3)
* Cost of the non-linear transforms is O(k* + k? + k3 + k%), so does not change cost.

— Only need to change last layer based on task (like regression or classification).
e Squared error, logistic, softmax, and so on.

Adding Bias Variables

L
Q
>

©

-
O
(qe]
()]
O
=
Vg

O

O
(qe]

O

e
(g

=

(0

O
Q.
>
)

=
[

L/'V\ea(w\0¢l?' wl”« L{qsi

Why Multiple Layers?

e Historically, deep learning was motivated by “connectionist” ideas:

— Brain consists of network of highly-connected simple units.
* Same units repeated in various places.

Computations are done in parallel.

Information is stored in distributed way.

Learning comes from updating of connection strengths.

One learning algorithm used everywhere.

Why Multiple Layers?

* And theories on the hierarchical organization of the visual system:

DEEP HIERARCHIES IN THE VISUAL SYSTEM
LOCATION FEATURE RECEPTIVE FIELD SIZE
RETINA PHOTORECEPTOR fo e
GANGLION CELL Qe
THALAMUS LGN O :
- Temporal LATERAL GENICULATE NucLELs @
iy
- <
remporal 4 Thalamus |]l el 0 "I .
,‘ © \ . "
O (D) LV
COMPLEX CELL
oOO™
43 [,]
Pulvi i V2 ? ¢ u
ulvinar nucleus: <= TEXTURE-DEFINED ILLUSORY BORDER
CONTOURS CONTOURS ~ OWNERSHIP
Lateral geniculate —— (v3)
nucleus
Superior colliculus — V4 ((‘ ®
CURVATURE LUMINANCE-INVARIANT it P
SELECTIVITY HUE
Optic radiation =
< VENTRAL DORSAL
\ Primary visual cortex PATHWAY PATHWAY
| VX & Nz
: kA
SIMPLE SHAPE
ELEWENTS ANALYSIS OF SPACE
N +H ACTION PLANING
Tt ¢O 8
COMPLEX FEATURE

CONFIGURATIONS

“Hierarchies of Parts” Intuition for Deep Learning

* Each “neuron” might recognize
a “part” of a digit.
— “Deeper” neurons might recognize
combinations of parts.

— Represent complex objects as
combinations of simpler parts.

 Watch the full video here:

— https://www.youtube.com/watch?v=aircAruvnKk

https://www.youtube.com/watch?v=aircAruvnKk

Why Multiple Layers?

* The idea of multi-layer designs appears in engineering too:

— Deep hierarchies in camera design:

Szt

Why Multiple Layers?

 There are also mathematical motivations for using multiple layers:

— 1 layer gives us a universal approximator.
* But this layer might need to be huge.

— With deep networks:

* Some functions can be approximated with exponentially-fewer parameters.
— Compared to a network with 1 hidden layer.

* So deep networks may need fewer parameters than “shallow but wide” networks.

— And hence may need less data to train.

* Empirical motivation for using multiple layers:

— In many domains deep networks have led to unprecedented performance.

New Issue: Vanishing Gradients

Consider the sigmoid function:

Away from the origimn, the gruadoiuenut is nea rIy Zero.
The problem gets worse when you take the sigmoid of a sigmoid:

In deep networks, many gradients can be nearly zero everywhere.
— And numerically they will be set to 0, so SGD does not move.

Rectified Linear Units (RelLU)

 Modern networks often replace sigmoid with perceptron loss (ReLU):
Max§0)z,-<§

R
]4?"/’(3.‘()

N/

* Just sets negative values z;. to zero.
— Reduces vanishing gradient problem (positive region is never flat).
— @Gives sparser activations.
— Still gives a universal approximator if size of hidden layers grows with ‘n’.

Skip Connections Deep Learning

e Skip connections can also reduce vanishing gradient problem:

” Z"/:'\ @—«N

D

* Makes “shortcuts” between layers (so fewer transformations).
— Many variations exist on skip connections exist.

Summary

Superiority of neural networks over linear models.

— If we initialize with a linear model and use skip connections.
Empirical “good news” for training neural networks with SGD:
— With enough hidden units, SGD often finds a global minimum.
Implicit regularization and double descent curves.

— Possible explanations for why neural networks often generalize well.
Over-parameterized models, that can fit data exactly.

— SGD converges fast with a constant step size for these models.
Deep learning:

— Neural networks with multiple hidden layers.

— RelLU activation function (vanishing gradient). Adam optimizer. Skip connections.

Next time: where is my gradient?

ML and Deep Learning History

e 1950 and 1960s: Initial excitement.

— Perceptron: linear classifier and stochastic gradient (roughly).

— “the embryo of an electronic computer that [the Navy] expects will be able
to walk, talk, see, write, reproduce itself and be conscious of its existence.” w'X,'
New York Times (1958).

e https://www.youtube.com/watch?v=IEFRtz68m-8

— Object recognition
assigned to students as a
summer project

 Then drop in popularity:

https://www.youtube.com/watch?v=IEFRtz68m-8

ML and Deep Learning History

DEEP HIERARCHIES IN THE VISUAL SYSTEM

* 1970 and 1980s: Connectionism (brain-inspired ML) | == g:
— Want “connected networks of simple units”. | 34
* Use parallel computation and distributed representations. wwom pde
— Adding hidden layers z; increases expressive power. " e S Mo
* With 1 layer and enough sigmoid units, a universal approximator. M ggéégg ¢ mmmmmmmmmm
— Success in optical character recognition. o bt
- Him Deep Learning learns layers of feature LU vz
BELIECIN ST e L T —
fun T T ==

ML and Deep Learning History

* 1990s and early-2000s: drop in popularity.

— |t proved really difficult to get multi-layer models working robustly.

— We obtained similar performance with simpler models:

e Rise in popularity of logistic regression and SVMs with regularization and kernels.
— Lots of internet successes (spam filtering, web search, recommendation).

— ML moved closer to other fields like numerical optimization and statistics.

ML and Deep Learning History

e Late 2000s: push to revive connectionism as “deep learning”.
— Canadian Institute For Advanced Research (CIFAR) NCAP program:

* “Neural Computation and Adaptive Perception”.
* Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio (“Canadian mafia”).

— Unsupervised successes: “deep belief networks” and “autoencoders”.
* Could be used to initialize deep neural networks.
e https://www.youtube.com/watch?v=KuPaiOogiHk

https://www.youtube.com/watch?v=KuPai0ogiHk

2010s: DEEP LEARNING!!!

* Bigger datasets, bigger models, parallel computing (GPUs/clusters).

— And some tweaks to the models from the 1980s.

 Huge improvements in automatic speech recognition (2009).
— All phones now have deep learning.
 Huge improvements in computer vision (2012).

— Changed computer vision field almost instantly. |
— This is now finding its way into products. — B [person

2010s: DEEP LEARNING!!!

* Media hype:

— “How many computers to identify a cat? 16,000
New York Times (2012).

— “Why Facebook is teaching its machines to think like humans”
Wired (2013).

— “What is ‘deep learning” and why should businesses care?”
Forbes (2013).

— “Computer eyesight gets a lot more accurate”
New York Times (2014).

e 2015: huge improvement in language understanding.

