CPSC 340: Machine Learning and Data Mining

Deep Learning

Last Time: Neural Networks

- Neural networks with one hidden layer:
 - Learn features and a classifier at the same time.
 - Output is two linear transformations (W, v), separated by non-linearity (h):

- Linear classification/regression using non-linearly transformed latent features z_i.
- Optimize logistic/softmax loss (classification) or squared error loss (regression) using SGD:

$$\frac{1}{2} \sum_{i=1}^{2} \left(\sqrt{h(W_{x_i})} - y_i \right)$$
(regression)

 $\sum_{i=1}^{\infty} \log(1 + \exp(-y_i \sqrt{h(W_{x_i})}))$ (binary classification

Is Training Neural Networks Scary?

- Learning:
 - For binary classification, the NLL under the sigmoid likelihood is:

$$f(W,v) = \sum_{i=1}^{n} \left[og((1 + erp(-y_i v^Th(W_{x_i})))) \right] loss function on erample is$$

- With 'W' fixed this is convex, but with both 'W' and 'v' as variables it is non-convex.
- And finding the global optimum is NP-hard in general.
- Nearly-always trained with variations on stochastic gradient descent (SGD).

$$W^{k+l} = W^{k} - \alpha^{k} \nabla_{W} f_{i_{K}}(W^{k}, v^{k}) = v^{k} - \alpha^{k} \nabla_{V} f_{i_{K}}(W^{k}, v^{k}) = v^{k} - \alpha^{k} - \alpha^{k} \nabla_{V} f_{i_{K}}(W^{k}, v^{k}) = v^{k} - \alpha^{k} - \alpha^{k} \nabla_{V} f_{i_{K}}(W^{k}, v^{$$

- Many variations exist (with "momentum", AdaGrad, Adam (173k cites), AdamW, and so on).
- But SGD is not guaranteed to reach a global minimum for non-convex problems.
- Is non-convexity a big drawback compared to logistic regression?
 - And if 'k' is large, is this likely to overfit?

Neural Networks \geq Logistic Regression

- Consider a neural network with one hidden layer and connections from input to output layer.
 - The extra connections are called "skip" connections.

- You could first set v=0, then optimize 'w' using logistic regression.
 - This is a convex optimization problem that gives you the logistic regression model.
- You could then set 'W' and 'v' to small random values, and start SGD from the logistic regression model.
 - And if you are worried about overfitting, you could use early stopping based on validation set.
 - Even though this is non-convex, the neural network can only improve on logistic regression.
- In practice, we typically optimize everything at once (which usually works better than the above).

"Hidden" Regularization in Neural Networks

• Fitting neural network with one hidden layer (SGD, no regularization):

- On each step of the x-axis, the network is re-trained from scratch.
- Training error goes to 0 with enough units: we're finding a global min.
- What should happen to test error as we increase size of hidden layer?

"Hidden" Regularization in Neural Networks

• Fitting neural network with one hidden layer (SGD, no regularization):

- Test error continues to go down!?! Where is fundamental trade-off??
 - It is still fundamental, but trade-off focuses on the "worst" global minimum.
- There do exist global mins with large #hidden units have test error = 1.
 - But among the global minima, SGD is somehow converging to "good" ones.

Multiple Global Minima?

• For standard objectives, there is a global min function value f*:

Multiple Global Minima?

• For standard objectives, there is a global min function value f*:

• But this may be achieved by many different parameter values.

Multiple Global Minima?

- These training error "global minima" may have very-different test errors.
- Some of these global minima may be more "regularized" than others.

Implicit Regularization of SGD

- There is empirical evidence SGD finds regularized parameters.
 - We call this the "implicit regularization" of the optimization algorithm, a new concept/phenomenon observed in the deep learning era.
- Beyond empirical evidence, we know this happens in simpler cases.
- An example of provable implicit regularization:
 - Consider a least squares problem where there exists a 'w' where Xw=y.
 - Residuals are all zero and we fit the data exactly for some 'w'.
 - You run gradient descent or SGD starting from w=0.
 - Converges to solution Xw=y that has the minimum L2-norm.
 - So using SGD is like using L2-regularization, but regularization is "implicit".

Implicit Regularization of SGD

- Another example of provable implicit regularization:
 - Consider a logistic regression problem where data is linearly separable.
 - A linear model can perfectly separate the data.
 - You run gradient descent from any starting point.
 - Converges to max-margin solution of the problem (minimum L2-norm solution).
 - So using gradient descent is equivalent to encouraging large margin.

• Related implicit regularization results are known for boosting, matrix factorization, and linear neural networks.

Implicit Regularization of SGD Examples

Different global minima have vastly different test errors

Next Topic: Double Descent Phenomenon

Double Descent Curves

Model Size (ResNet18 Width)

• What is going on???

- Learning theory (trade-off) results analyze global min with worst test error.
 - Actual test error for different global minima will be better than worst case bound.
 - Theory is correct, but maybe "worst overfitting possible" is too pessimistic?

- Consider instead the global min with best test error.
 - With small models, "minimize training error" leads to unique (or similar) global mins.
 - With larger models, there is a lot of flexibility in the space of global mins (gap between best/worst).
- Gap between "worst" and "best" global min can grow with model complexity.

- Can get "double descent" curve in practice if parameters roughly track "best" global min shape.
 One way to do this: increase regularization as you increase model size.
- Maybe "neural network trained with SGD" has "more implicit regularization for bigger models"?
 - But "double descent" is not specific to implicit regularization of SGD and not specific to neural networks.

Double Descent on a Linear Least Squares Problem

Double Descent on a Linear Least Squares Problem

- ||w|| increases until you fit data exactly (only one 'w' fits exactly).
- Then norm of parameters starts decreasing (many 'w' can fit exactly).
 - So implicit regularization of gradient descent gives lower norm 'w' values.

Double Descent on a Linear Least Squares Problem

- We see fundamental trade-off if we plot error vs. norm.
 - After we have fit data exactly, models are less "complicated" as we add more parameters.
- Can also make double descent curves by increasing explicit regularization.
- Under right conditions, can see double descent in other models like random forests.

Implicit Regularization of SGD for Neural Networks

- For neural networks, why would SGD implicit regularization increase with number of hidden units?
 - Similar to least squares, maybe SGD finds low-norm solutions?
 - In higher-dimensions, there is flexibility in global mins to have a low norm?
 - Maybe SGD stays closer to starting point as we increase dimension?
 - This would be more like a regularizer of the form $||w w^0||$.

Over-Parameterization and SGD

- Over-parameterized model:
 - A model that has more parameters than needed to fit data exactly.
- Amazing properties of SGD for many over-parameterized models:
 - SGD tends to find a global minimum of training error.
 - SGD tends to have implicit regularization.
 - SGD converges with a constant step size.
 - At nearly the speed of gradient descent.
- Why can SGD converge with a constant step size?
 - Variation in gradients is 0 at solutions that fit all training examples.
 - No "region of confusion".

Over-Parameterization and SGD

• Gradient descent vs. SGD for under/over-parameterized least squares:

- No need to decrease step sizes or increase batch sizes for over-parameterized.
 - And nice ways to set the step size as you go ("painless SGD", "Polyak step size").
- Still expect good performance if you are close to being over-parameterized.

Next Topic: Deep Learning

Deep Learning (As a Picture)

• Deep learning models have more than one hidden layer:

• We apply linear transformation and activation function at each "layer".

Deep Learning (As a Function)

Linear modeli $O_i = w^T X_i$ Neural network with I hidden layer: $\mathcal{O}_{i} = \mathbf{v}^{\mathsf{T}} h(\mathbf{W} \mathbf{x}_{i})$ Neural network with 2 hidden layers: $O_{i} = v^{T} h(W^{(1)} h(W^{(1)} x_{i}))$ Neural network with 3 hidden layers $O_{i} = v^{T} h(W^{(3)} h(W^{(2)} h(W^{(1)} x_{i})))$

https://mathwithbaddrawings.com/2016/04/27/symbols-that-math-urgently-needs-to-adop

Neural notwork with 4 hidden layers: $O_{i} = v^{T} h(W^{(1)} h(W^{(2)} h(W^{(2)} h(W^{(2)} X_{i}))))$ With 'm' layers we could use: $\mathcal{O}_{i} = \mathbf{v}^{\mathsf{T}} \left(\mathbf{I}^{\mathsf{m}} \mathbf{h} (\mathbf{W}^{(l)} \mathbf{x}_{i}) \right)$ Symbol: $\prod f_{\kappa}(+)$ Meaning: fnofno fno fno frof, of, (+)

Notation Warning: "Number of Layers"

- In this class, we say that the network below has "2 hidden layers":
 - Number of intermediate hidden unit groups is number of "layers".

- Caution: exist other ways of counting the number of "layers".
 - Some sources would refer to the above as a 3-layer neural network.
 - They count the number of linear transformations we do.
 - So network with 1 hidden layer would be a "2-layer" network, and linear models are "1-layer networks".

Prediction with Deep Neural Networks

- The "textbook" choice for deep neural networks:
 - Alternate between doing linear transformations and non-linear transforms.

$$O_{i} = v^{T} h(W^{(4)} h(W^{(3)} h(W^{(2)} h(W^{(2)} x_{i}))))$$

- Each "layer" might have a different size.
 - W¹ is k¹ x d.
 - W^2 is $k^2 \times k^1$.
 - W^3 is $k^3 x k^2$.
 - W^4 is $k^4 \times k^3$.
 - v is k⁴ x 1.

- z[1] = W1*x
 for layer in 2:nLayers
 z[layer] = Wm[layer-1]*h(z[layer-1])
 end
 yhat = v'*h(z[end])
- We may use the same non-linear transform, such as sigmoid, at each layer.
- Cost for prediction, which is called "forward propagation":
 - Cost of the matrix multiplies: $O(k^1d + k^2k^1 + k^3k^2 + k^4k^3)$
 - Cost of the non-linear transforms is $O(k^1 + k^2 + k^3 + k^4)$, so does not change cost.
- Only need to change last layer based on task (like regression or classification).
 - Squared error, logistic, softmax, and so on.

Adding Bias Variables

• We typically add a bias to each layer:

Linear model with bigs: Xin

Why Multiple Layers?

- Historically, deep learning was motivated by "connectionist" ideas:
 - Brain consists of network of highly-connected simple units.
 - Same units repeated in various places.
 - Computations are done in parallel.
 - Information is stored in distributed way.
 - Learning comes from updating of connection strengths.
 - One learning algorithm used everywhere.

Why Multiple Layers?

• And theories on the hierarchical organization of the visual system:

"Hierarchies of Parts" Intuition for Deep Learning

- Each "neuron" might recognize a "part" of a digit.
 - "Deeper" neurons might recognize combinations of parts.
 - Represent complex objects as combinations of simpler parts.

- Watch the full video here:
 - <u>https://www.youtube.com/watch?v=aircAruvnKk</u>

Why Multiple Layers?

- The idea of multi-layer designs appears in engineering too:
 - Deep hierarchies in camera design:

Why Multiple Layers?

- There are also mathematical motivations for using multiple layers:
 - 1 layer gives us a universal approximator.
 - But this layer might need to be huge.
 - With deep networks:
 - Some functions can be approximated with exponentially-fewer parameters.
 - Compared to a network with 1 hidden layer.
 - So deep networks may need fewer parameters than "shallow but wide" networks.
 - And hence may need less data to train.
- Empirical motivation for using multiple layers:
 - In many domains deep networks have led to unprecedented performance.

New Issue: Vanishing Gradients

• Consider the sigmoid function:

- Away from the origin, the gradient is nearly zero.
- The problem gets worse when you take the sigmoid of a sigmoid:

- In deep networks, many gradients can be nearly zero everywhere.
 - And numerically they will be set to 0, so SGD does not move.

Rectified Linear Units (ReLU)

• Modern networks often replace sigmoid with perceptron loss (ReLU):

- Just sets negative values z_{ic} to zero.
 - Reduces vanishing gradient problem (positive region is never flat).
 - Gives sparser activations.
 - Still gives a universal approximator if size of hidden layers grows with 'n'.

Skip Connections Deep Learning

• Skip connections can also reduce vanishing gradient problem:

- Makes "shortcuts" between layers (so fewer transformations).
 - Many variations exist on skip connections exist.

Summary

- Superiority of neural networks over linear models.
 - If we initialize with a linear model and use skip connections.
- Empirical "good news" for training neural networks with SGD:
 With enough hidden units, SGD often finds a global minimum.
- Implicit regularization and double descent curves.
 - Possible explanations for why neural networks often generalize well.
- Over-parameterized models, that can fit data exactly.
 - SGD converges fast with a constant step size for these models.
- Deep learning:
 - Neural networks with multiple hidden layers.
 - ReLU activation function (vanishing gradient). Adam optimizer. Skip connections.
- Next time: where is my gradient?

- 1950 and 1960s: Initial excitement.
 - Perceptron: linear classifier and stochastic gradient (roughly).
 - "the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence." w X; New York Times (1958).
 - https://www.youtube.com/watch?v=IEFRtz68m-8
 - Object recognition
 assigned to students as a summer project
- Then drop in popularity:
 - Quickly realized limitations of linear models.

- 1970 and 1980s: Connectionism (brain-inspired ML)
 - Want "connected networks of simple units".
 - Use parallel computation and distributed representations.
 - Adding hidden layers z_i increases expressive power.
 - With 1 layer and enough sigmoid units, a universal approximator.
 - Success in optical character recognition.

https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing http://www.datarobot.com/blog/a-primer-on-deep-learning/ http://blog.csdn.net/strint/article/details/44163869

- 1990s and early-2000s: drop in popularity.
 - It proved really difficult to get multi-layer models working robustly.
 - We obtained similar performance with simpler models:
 - Rise in popularity of logistic regression and SVMs with regularization and kernels.
 - Lots of internet successes (spam filtering, web search, recommendation).
 - ML moved closer to other fields like numerical optimization and statistics.

- Late 2000s: push to revive connectionism as "deep learning".
 - Canadian Institute For Advanced Research (CIFAR) NCAP program:
 - "Neural Computation and Adaptive Perception".
 - Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio ("Canadian mafia").
 - Unsupervised successes: "deep belief networks" and "autoencoders".
 - Could be used to initialize deep neural networks.
 - <u>https://www.youtube.com/watch?v=KuPai0ogiHk</u>

2010s: DEEP LEARNING!!!

- Bigger datasets, bigger models, parallel computing (GPUs/clusters).
 And some tweaks to the models from the 1980s.
- Huge improvements in automatic speech recognition (2009).
 - All phones now have deep learning.
- Huge improvements in computer vision (2012).
 - Changed computer vision field almost instantly.
 - This is now finding its way into products.

http://www.image-net.org/challenges/LSVRC/2014/

2010s: DEEP LEARNING!!!

- Media hype:
 - "How many computers to identify a cat? 16,000"

New York Times (2012).

- "Why Facebook is teaching its machines to think like humans" Wired (2013).
- "What is 'deep learning' and why should businesses care?"
 Forbes (2013).
- "Computer eyesight gets a lot more accurate"

New York Times (2014).

• 2015: huge improvement in language understanding.