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Last Time: Neural Networks
• Neural networks with one hidden layer:
– Learn features and a classifier at the same time.
– Output is two linear transformations (W, v), separated by non-linearity (h):

– Linear classification/regression using non-linearly transformed latent features zi.
– Optimize logistic/softmax loss (classification) or squared error loss (regression) 

using SGD:

(regression) (binary classification)



Is Training Neural Networks Scary?
• Learning:
– For binary classification, the NLL under the sigmoid likelihood is:

• With ‘W’ fixed this is convex, but with both ‘W’ and ‘v’ as variables it is non-convex.
• And finding the global optimum is NP-hard in general.

– Nearly-always trained with variations on stochastic gradient descent (SGD).

• Many variations exist (with “momentum”, AdaGrad, Adam (173k cites), AdamW, and so on).
• But SGD is not guaranteed to reach a global minimum for non-convex problems.

• Is non-convexity a big drawback compared to logistic regression?
– And if ‘k’ is large, is this likely to overfit?



Neural Networks ≥	Logistic Regression
• Consider a neural network with one hidden layer and connections from input to output layer.

– The extra connections are called “skip” connections.

• You could first set v=0, then optimize ‘w’ using logistic regression.
– This is a convex optimization problem that gives you the logistic regression model.

• You could then set ‘W’ and ‘v’ to small random values, and start SGD from the logistic regression model.
– And if you are worried about overfitting, you could use early stopping based on validation set.
– Even though this is non-convex, the neural network can only improve on logistic regression.

• In practice, we typically optimize everything at once (which usually works better than the above).



“Hidden” Regularization in Neural Networks
•  Fitting neural network with one hidden layer (SGD, no regularization):

• On each step of the x-axis, the network is re-trained from scratch.
• Training error goes to 0 with enough units: we’re finding a global min.
• What should happen to test error as we increase size of hidden layer?

https://www.neyshabur.net/papers/inductive_bias_poster.pdf



“Hidden” Regularization in Neural Networks
•  Fitting neural network with one hidden layer (SGD, no regularization):

• Test error continues to go down!?! Where is fundamental trade-off??
– It is still fundamental, but trade-off focuses on the “worst” global minimum.

• There do exist global mins with large #hidden units have test error = 1.
– But among the global minima, SGD is somehow converging to “good” ones.

https://www.neyshabur.net/papers/inductive_bias_poster.pdf



Multiple Global Minima?
• For standard objectives, there is a global min function value f*:



Multiple Global Minima?
• For standard objectives, there is a global min function value f*:

• But this may be achieved by many different parameter values.



Multiple Global Minima?

• These training error “global minima” may have very-different test errors.
• Some of these global minima may be more “regularized” than others.



Implicit Regularization of SGD
• There is empirical evidence SGD finds regularized parameters.
– We call this the “implicit regularization” of the optimization algorithm, a 

new concept/phenomenon observed in the deep learning era. 

• Beyond empirical evidence, we know this happens in simpler cases.

• An example of provable implicit regularization:
– Consider a least squares problem where there exists a ‘w’ where Xw=y.

• Residuals are all zero and we fit the data exactly for some ‘w’.
– You run gradient descent or SGD starting from w=0.
– Converges to solution Xw=y that has the minimum L2-norm.

• So using SGD is like using L2-regularization, but regularization is “implicit”.



Implicit Regularization of SGD
• Another example of provable implicit regularization:
– Consider a logistic regression problem where data is linearly separable.

• A linear model can perfectly separate the data.
– You run gradient descent from any starting point.
– Converges to max-margin solution of the problem (minimum L2-norm solution).

• So using gradient descent is equivalent to encouraging large margin.

• Related implicit regularization results are known for 
boosting, matrix factorization, and linear neural networks.



Implicit Regularization of SGD Examples

• Different global minima have vastly different test errors

https://cs229.stanford.edu/notes2022fall/main_notes.pdf



Next Topic: Double Descent Phenomenon



Double Descent Curves

• What is going on???
https://openai.com/blog/deep-double-descent/



Worst vs. Best “Global Minimum”



Worst vs. Best “Global Minimum”

• Learning theory (trade-off) results analyze global min with worst test error.
– Actual test error for different global minima will be better than worst case bound.
– Theory is correct, but maybe “worst overfitting possible” is too pessimistic?



Worst vs. Best “Global Minimum”

• Consider instead the global min with best test error.
– With small models, “minimize training error” leads to unique (or similar) global mins.
– With larger models, there is a lot of flexibility in the space of global mins (gap between best/worst).

• Gap between “worst” and “best” global min can grow with model complexity.



Worst vs. Best “Global Minimum”

• Can get “double descent” curve in practice if parameters roughly track “best” global min shape.
– One way to do this: increase regularization as you increase model size.

• Maybe “neural network trained with SGD” has “more implicit regularization for bigger models”?
– But “double descent” is not specific to implicit regularization of SGD and not specific to neural networks.



Double Descent on a Linear Least Squares Problem

https://cs229.stanford.edu/lectures-spring2022/main_notes.pdf

• Fitting least squares with gradient descent (n=500):



Double Descent on a Linear Least Squares Problem

• ||w|| increases until you fit data exactly (only one ‘w’ fits exactly).
• Then norm of parameters starts decreasing (many ‘w’ can fit exactly).
– So implicit regularization of gradient descent gives lower norm ‘w’ values.

https://cs229.stanford.edu/lectures-spring2022/main_notes.pdf



Double Descent on a Linear Least Squares Problem

• We see fundamental trade-off if we plot error vs. norm.
– After we have fit data exactly, models are less “complicated” as we add more parameters.

• Can also make double descent curves by increasing explicit regularization.
• Under right conditions, can see double descent in other models like random forests.

https://cs229.stanford.edu/lectures-spring2022/main_notes.pdf



Implicit Regularization of SGD for Neural Networks

• For neural networks, why would 
SGD implicit regularization increase with number of hidden units?
– Similar to least squares, maybe SGD finds low-norm solutions?

• In higher-dimensions, there is flexibility in global mins to have a low norm?

– Maybe SGD stays closer to starting point as we increase dimension?
• This would be more like a regularizer of the form ||w – w0||.

https://rajatvd.github.io/NTK/



Over-Parameterization and SGD
• Over-parameterized model:
– A model that has more parameters than needed to fit data exactly.

• Amazing properties of SGD for many over-parameterized models:
– SGD tends to find a global minimum of training error.
– SGD tends to have implicit regularization.
– SGD converges with a constant step size.

• At nearly the speed of gradient descent.

• Why can SGD converge with a constant step size?
– Variation in gradients is 0 at solutions that fit all training examples.

• No “region of confusion”.



Over-Parameterization and SGD
• Gradient descent vs. SGD for under/over-parameterized least squares:

– No need to decrease step sizes or increase batch sizes for over-parameterized.
• And nice ways to set the step size as you go (“painless SGD”, “Polyak step size”).

– Still expect good performance if you are close to being over-parameterized.



Next Topic: Deep Learning



Deep Learning (As a Picture)
• Deep learning models have more than one hidden layer:

• We apply linear transformation and activation function at each “layer”.



Deep Learning (As a Function)

https://mathwithbaddrawings.com/2016/04/27/symbols-that-math-urgently-needs-to-adopt



Notation Warning: “Number of Layers”
• In this class, we say that the network below has “2 hidden layers”:

– Number of intermediate hidden unit groups is number of “layers”.

• Caution: exist other ways of counting the number of “layers”.
– Some sources would refer to the above as a 3-layer neural network.

• They count the number of linear transformations we do.
• So network with 1 hidden layer would be a “2-layer” network, and linear models are “1-layer networks”.



Prediction with Deep Neural Networks
• The “textbook” choice for deep neural networks:

– Alternate between doing linear transformations and non-linear transforms.

– Each “layer” might have a different size.
• W1 is k1 x d.
• W2 is k2 x k1.
• W3 is k3 x k2.
• W4 is k4 x k3.
• v is k4 x 1.

– We may use the same non-linear transform, such as sigmoid, at each layer.
– Cost for prediction, which is called “forward propagation”:

• Cost of the matrix multiplies: O(k1d + k2k1 + k3k2 + k4k3)
• Cost of the non-linear transforms is O(k1 + k2 + k3 + k4), so does not change cost.

– Only need to change last layer based on task (like regression or classification).
• Squared error, logistic, softmax, and so on.



Adding Bias Variables
• We typically add a bias to each layer:



Why Multiple Layers?
• Historically, deep learning was motivated by “connectionist” ideas:
– Brain consists of network of highly-connected simple units.

• Same units repeated in various places.
• Computations are done in parallel.
• Information is stored in distributed way.
• Learning comes from updating of connection strengths.
• One learning algorithm used everywhere.

https://www.nytimes.com/2015/01/11/magazine/sebastian-seungs-quest-to-map-the-human-brain.html



Why Multiple Layers?
• And theories on the hierarchical organization of the visual system:

http://www.strokenetwork.org/newsletter/articles/vision.htm
https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing



“Hierarchies of Parts” Intuition for Deep Learning

• Each “neuron” might recognize 
a “part” of a digit.
– “Deeper” neurons might recognize

combinations of parts.
– Represent complex objects as 

combinations of simpler parts.

• Watch the full video here:
– https://www.youtube.com/watch?v=aircAruvnKk

https://www.youtube.com/watch?v=aircAruvnKk


Why Multiple Layers?
• The idea of multi-layer designs appears in engineering too:
– Deep hierarchies in camera design:

http://www.argmin.net/2018/01/25/optics/



Why Multiple Layers?
• There are also mathematical motivations for using multiple layers:
– 1 layer gives us a universal approximator.

• But this layer might need to be huge.

– With deep networks:
• Some functions can be approximated with exponentially-fewer parameters.

– Compared to a network with 1 hidden layer.

• So deep networks may need fewer parameters than “shallow but wide” networks.
– And hence may need less data to train.

• Empirical motivation for using multiple layers:
– In many domains deep networks have led to unprecedented performance.



New Issue: Vanishing Gradients
• Consider the sigmoid function:

• Away from the origin, the gradient is nearly zero.
• The problem gets worse when you take the sigmoid of a sigmoid:

• In deep networks, many gradients can be nearly zero everywhere.
– And numerically they will be set to 0, so SGD does not move.



Rectified Linear Units (ReLU)
• Modern networks often replace sigmoid with perceptron loss (ReLU):

• Just sets negative values zic to zero.
– Reduces vanishing gradient problem (positive region is never flat).
– Gives sparser activations.
– Still gives a universal approximator if size of hidden layers grows with ‘n’.



Skip Connections Deep Learning
• Skip connections can also reduce vanishing gradient problem:

• Makes “shortcuts” between layers (so fewer transformations).
– Many variations exist on skip connections exist.



Summary
• Superiority of neural networks over linear models.
– If we initialize with a linear model and use skip connections.

• Empirical “good news” for training neural networks with SGD:
– With enough hidden units, SGD often finds a global minimum.

• Implicit regularization and double descent curves. 
– Possible explanations for why neural networks often generalize well.

• Over-parameterized models, that can fit data exactly.
– SGD converges fast with a constant step size for these models.

• Deep learning:
– Neural networks with multiple hidden layers. 
– ReLU activation function (vanishing gradient). Adam optimizer.  Skip connections.

• Next time: where is my gradient?



ML and Deep Learning History
• 1950 and 1960s: Initial excitement.
– Perceptron: linear classifier and stochastic gradient (roughly).
– “the embryo of an electronic computer that [the Navy] expects will be able 

to walk, talk, see, write, reproduce itself and be conscious of its existence.” 
New York Times (1958).
• https://www.youtube.com/watch?v=IEFRtz68m-8

– Object recognition 
assigned to students as a
summer project

• Then drop in popularity:
– Quickly realized limitations of linear models.

https://mitpress.mit.edu/books/perceptrons/

https://www.youtube.com/watch?v=IEFRtz68m-8


ML and Deep Learning History
• 1970 and 1980s: Connectionism (brain-inspired ML)
– Want “connected networks of simple units”.

• Use parallel computation and distributed representations.

– Adding hidden layers zi increases expressive power.
• With 1 layer and enough sigmoid units, a universal approximator.

– Success in optical character recognition. 

https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing
http://www.datarobot.com/blog/a-primer-on-deep-learning/
http://blog.csdn.net/strint/article/details/44163869



ML and Deep Learning History
• 1990s and early-2000s: drop in popularity.
– It proved really difficult to get multi-layer models working robustly.

– We obtained similar performance with simpler models:
• Rise in popularity of logistic regression and SVMs with regularization and kernels.

– Lots of internet successes (spam filtering, web search, recommendation).

– ML moved closer to other fields like numerical optimization and statistics.



ML and Deep Learning History
• Late 2000s: push to revive connectionism as “deep learning”.
– Canadian Institute For Advanced Research (CIFAR) NCAP program:

• “Neural Computation and Adaptive Perception”.
• Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio (“Canadian mafia”).

– Unsupervised successes: “deep belief networks” and “autoencoders”.
• Could be used to initialize deep neural networks.
• https://www.youtube.com/watch?v=KuPai0ogiHk

https://www.cs.toronto.edu/~hinton/science.pdf

https://www.youtube.com/watch?v=KuPai0ogiHk


2010s: DEEP LEARNING!!!
• Bigger datasets, bigger models, parallel computing (GPUs/clusters). 
– And some tweaks to the models from the 1980s.

• Huge improvements in automatic speech recognition (2009).
– All phones now have deep learning.

• Huge improvements in computer vision (2012).
– Changed computer vision field almost instantly.
– This is now finding its way into products.

http://www.image-net.org/challenges/LSVRC/2014/



2010s: DEEP LEARNING!!!
• Media hype:
– “How many computers to identify a cat? 16,000”

        New York Times (2012).
– “Why Facebook is teaching its machines to think like humans”

        Wired (2013).
– “What is ‘deep learning’ and why should businesses care?”

        Forbes (2013).
– “Computer eyesight gets a lot more accurate”

        New York Times (2014).

• 2015: huge improvement in language understanding.


