CPSC 340:
 Machine Learning and Data Mining

Deep Learning

Admin

- Course surveys

- Please fill them out
- We care deeply about your education, so we take them very seriously
- You will be able to evaluate the class overall, and then Prof. Schmidt and I separately
- As always, please remember we're real people, so both praise and constructive criticism feedback are great. Please avoid personal, hurtful, or unconstructive negative comments. Tone matters!

Last Time

Supervised Learning Roadmap
Hand-engineered features: Learn a latent-factor model: Learn 'w' and 'W' Neural network:

But still gives a linear model.

Requires domain knowidje and can be time-cons using

Good representation of x_{i} might be bad for predicting y_{i}

Extra non-linear transformation ' h '.

Regression vs. Binary Classification

- For regression problems, our prediction (ignoring biases) is:

- And we might train to minimize the squared residual:

$$
f\left(W_{i}\right)=\frac{1}{2} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}=\frac{1}{2} \sum_{i=1}^{n}\left(v^{\top} h\left(W x_{i}\right)-y_{i}\right)^{2}
$$

Regression vs. Binary Classification

- For binary classification problems, our prediction is:

$$
0_{i}=v^{\top} h\left(W_{x_{i}}\right) \quad \hat{y}_{i}=\operatorname{sign}\left(0_{i}\right)
$$

- And we might train to minimize the logistic loss:

$$
f\left(w_{v}\right)=\sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} o_{i}\right)\right)=\sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} v^{\top} h\left(w_{x_{i}}\right)\right)\right.
$$

- This is like logistic regression with 'léarned features.

Neural Network for Multi-Class Classification

- Multi-class classification a neural network:
- Input is connected to a hidden layer (same as regression and binary case).
- Hidden layer is connected to multiple output units (one for each label.).

$$
o_{i l}=V_{i}^{\top} h\left(W_{x_{i}}\right)
$$

Now have a matrix

$$
o_{i Q}=v_{2}^{\top} h\left(W_{x_{i}}\right)
$$

or parameturs:

$$
o_{i 3}=V_{3}^{\top} h\left(W_{x_{i}}\right)
$$

$$
V=\left[\begin{array}{c}
-v_{1}^{\top}- \\
v_{2}- \\
\vdots \\
\vdots \\
v_{k_{1}^{\prime}}^{\top}-
\end{array}\right]
$$

- We can predict by maximizing $o_{i c}$ over all ' c '.
- We can convert to probabilities for each class using softmax to the $o_{i c}$ values:

$$
\frac{\exp \left(O_{i c}\right)}{\sum_{c^{\prime}=1}^{k^{\prime}} \exp \left(O_{i c^{\prime}}\right)}
$$

- We train by minimizing negative log of this probability (softmax loss, summed across examples).
- Notice that we changed tasks by only changing last layer (and loss function).

Adding Bias Variables

- We typically add a bias to each layer:

Linear model with bias:

Deep Learning

Deep Learning Terminology

- "layer" = number of layers of weights (numWs + V)
- "hidden layer" = number of activation layers (Zs) (not including inputs)
- do not assume people are consistent with this language

Neural Networks

Outputs I if >= number in node Else: 0

Non-Linear Mapping

Neural Networks

Outputs I if >= number in node Else: 0

Non-Linear Mapping

Neural Networks

Outputs I if >= number in node Else: 0

Non-Linear Mapping

Neural Networks

Outputs I if >= number in node Else: 0

Non-Linear Mapping

Neural Networks

Outputs I if >= number in node Else: 0

Non-Linear Mapping

Neural Networks

Neural Networks

- Point of XOR was not that you need $k>d$
- Instead
- an example of how that can make things easier
- and how a transformation can make things linearly separable
- Cover's theorem:"The probability that classes are linearly separable increases when the features are nonlinearly mapped to a higher dimensional feature space." [Coover 1965]
- The output layer requires linear separability.
- The purpose of the hidden layers is to make the problem linearly separable!
- Multi-layer networks thus allow "non-linear regression"

Neural Networks

- Multi-layer networks thus allow "non-linear regression"

Sigmoid Function

Figure 18.23 (a) The result of combining two opposite-facing soft threshold functions ${ }^{*}$ to produce a ridge. (b) The result of combining two ridges to produce a bump.

Neural Networks

- Multi-layer networks thus allow "non-linear regression"
- Single hidden layer (often very large):
- can represent any continuous function
- Two hidden layers:
- can represent any discontinuous function

Higher-level representation

Hierarchy of feature representations

Learning features relevant to the data

Learning features relevant to the data

- I give a whole talk on work my colleagues and I have done in visualizing deep neural networks that I think you will enjoy
- Deep Learning Overview \&Visualizing What Deep Neural Networks Learn
- https://www.youtube.com/watch?v=31p9eN5JE2A

"Hierarchies of Parts" Motivation for Deep Learning

- Each "neuron" might recognize
a "part" of a digit.
- "Deeper" neurons might recognize combinations of parts .
- Represent complex objects as hierarchical combinations of re -useable parts (a simple "grammar").
- Watch the full video here:
- https://www.youtube.com/watch?v=aircAruvnKk
- Theory:

- 1 big -enough hidden layer already gives universal approximation.
- But some functions require exponentially -fewer parameters to approximate with more layers (can fight curse of dimensionality).

Deep Learning Terminology

. "layer" = number of layers of weights (numWs + V)

- "hidden layer" = number of activation layers (Zs) (not including inputs,)
- Everyone: use both terms to describe this net

Why Multiple Layers?

- Historically, deep learning was motivated by "connectionist" ideas:
- Brain consists of network of highly-connected simple units.
- Same units repeated in various places.
- Computations are done in parallel.
- Information is stored in distributed way.
- Learning comes from updating of connection strengths.
- One learning algorithm used everywhere.

Why Multiple Layers?

- And theories on the hierarchical organization of the visual system:

Why Multiple Layers?

- The idea of multi-layer designs appears in engineering too:
- Deep hierarchies in camera design:

Why Multiple Layers?

- There are also mathematical motivations for using multiple layers:
- 1 layer gives us a universal approximator.
- But this layer might need to be huge.
- With deep networks:
- Some functions can be approximated with exponentially-fewer parameters.
- Compared to a network with 1 hidden layer.
- So deep networks may need fewer parameters than "shallow but wide" networks.
- And hence may need less data to train.
- Empirical motivation for using multiple layers:
- In many domains deep networks have led to unprecedented performance.

Deep Learning
Linear model:

$$
\hat{y}_{i}=w^{\top} x_{i}
$$

Neural network with I hidden layer:

$$
\hat{y}_{i}=v^{\top} h(\underbrace{W_{x_{i}}}_{2_{i}})
$$

Neural network with 2 hidden layers:

$$
\hat{y}_{i}=v^{\top} h(\underbrace{W^{(2)} h(\underbrace{W^{(1)}}_{2 i} x_{i}))}_{2_{i}^{(2)}}
$$

Neural network with 3 hidden layers

$$
\hat{y}_{i}=v^{\top} h(\underbrace{W^{(3)} h(\underbrace{w^{(2)} h(\underbrace{W^{(1)}}_{i} x_{i}}_{z_{i}^{(12)}}))}_{z_{i}^{(3)}}
$$

Deep learning:

Second "layer" of latent features Y You can add more "layers" to go "deeper"

Summary

- Neural networks learn features zi for supervised learning.
- Sigmoid function avoids degeneracy by introducing non-linearity.
- Universal approximator with large - enough ' k '.
- Biological motivation for (deep) neural networks.
- Deep learning considers neural networks with many hidden layers. - Can more- efficiently represent some functions.
- Unprecedented performance on difficult pattern recognition tasks.

Multiple Word Prototypes

- What about homonyms and polysemy?
- The word vectors would need to account for all meanings.
- More recent approaches:
- Try to cluster the different contexts where words appear.
- Use different vectors for different contexts .

$$
X_{\text {jagnar }}=\left[\ldots . . \begin{array}{c}
\cdots \\
\cdots
\end{array}\right] \begin{aligned}
& z_{j 1} \\
& z_{j 2} \\
& z_{j 3}
\end{aligned}
$$

Multiple Word Prototypes

Why zi=Wxi?

- In PCA we had that the optimal $Z=X W ~ т(W W ~ т)-1 . ~$
- If W had normalized+orthogonal rows, $\mathrm{Z}=\mathrm{XW}$ т (since WW т $=\mathrm{I}$).
- So $\mathrm{zi}=\mathrm{Wx}$ i in this normalized+orthogonal case.
- Why we would use $\mathrm{zi}_{\mathrm{i}}=\mathrm{Wx}$ i in neural networks?
- We didn't enforce normalization or orthogonality.
- Well, the value $\mathrm{W}_{\mathrm{T}}(\mathrm{WW} \mathrm{t})-1$ is just "some matrix".
- You can think of neural networks as just directly learning this matrix .

(pause)

CPSC 340:
 Machine Learning and Data Mining

Deep Learning

Recap of Last Time

Deep Learning

Higher-level representation

Hierarchy of feature representations

"Hierarchies of Parts" Motivation for Deep Learning

- Each "neuron" might recognize
a "part" of a digit.
- "Deeper" neurons might recognize combinations of parts .
- Represent complex objects as hierarchical combinations of re -useable parts (a simple "grammar").
- Watch the full video here:
- https://www.youtube.com/watch?v=aircAruvnKk
- Theory:

- 1 big -enough hidden layer already gives universal approximation.
- But some functions require exponentially -fewer parameters to approximate with more layers (can fight curse of dimensionality).

ML and Deep Learning History

- 1950 and 1960s: Initial excitement.
- Perceptron : linear classifier and stochastic gradient (roughly).
- "the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence." $w^{\top} x_{i}$ New York Times (1958).
- https://www.youtube.com/watch?v=IEFRtz68m-8
- Object recognition assigned to students as a summer project
- Then drop in popularity:

- Quickly realized limitations of linear models .

ML and Deep Learning History

- 1970 and 1980s: Connectionism (brain -inspired ML) - Want "connected networks of simple units ".
- Use parallel computation and distributed representations.
- Adding hidden layers Zi increases expressive power.
- With 1 layer and enough sigmoid units, a universal approximator.
- Success in optical character recognition.

ML and Deep Learning History

- 1990s and early -2000s: drop in popularity.
- It proved really difficult to get multi - layer models working robustly.
- We obtained similar performance with simpler models:
- Rise in popularity of logistic regression and SVMs with regularization and kernels .
- Lots of internet successes (spam filtering, web search, recommendation).
- ML moved closer to other fields like numerical optimization and statistics.

ML and Deep Learning History

- Late 2000s: push to revive connectionism as "deep learning ".
- Canadian Institute For Advanced Research (CIFAR) NCAP program:
- "Neural Computation and Adaptive Perception".
- Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio
- Unsupervised successes: "deep belief networks" and "autoencoders".
- Could be used to initialize deep neural networks.

2010s: DEEP LEARNING!!!

- Bigger datasets, bigger models, parallel computing (GPUs/clusters).
- And some tweaks to the models from the 1980s.
- Huge improvements in automatic speech recognition (2009).
- All phones now have deep learning.
- Huge improvements in computer vision (2012).
- Changed computer vision field almost instantly.
- Now is how most CV (and AI) is done

2010s: DEEP LEARNING!!!

- Media hype:
- "How many computers to identify a cat? 16,000 "

New York Times (2012).

- "Why Facebook is teaching its machines to think like humans"

Wired (2013).

- "What is 'deep learning' and why should businesses care?"

Forbes (2013).

- "Computer eyesight gets a lot more accurate"

New York Times (2014).

- 2015: huge improvement in language understanding

ImageNet Challenge

- Millions of labeled images, 1000 object classes.

Easy for humans but
hard for computers.

ImageNet Challenge

- Object detection task:
- Single label per image.
- Humans: ~5\% error.

Syberian Husky

Canadian Husky

Image classification

ImageNet Challenge

- Object detection task:
- Single label per image.
- Humans: ~5\% error.

Syberian Husky

Canadian Husky

Image classification

ImageNet Challenge

- Object detection task:
- Single label per image.
- Humans: ~5\% error.

Syberian Husky

Canadian Husky

Image classification

ImageNet Challenge

Image classification

ImageNet Challenge

- Object detection task:
- Single label per image.
- Humans: $\sim 5 \%$ error.

Syberian Husky

ImageNet Challenge

- Object detection task:
- Single label per image.
- Humans: $\sim 5 \%$ error.
- 2015: Won by Microsoft Asia
- 3.6% error.

Classification

Localization

- 152 layers, introduced "ResNets".
- Also won "localization" (finding location of objects in images).
- 2016: Chinese University of Hong Kong:
- Ensembles of previous winners and other existing methods.
- 2017: fewer entries, organizers decided this would be last year.

Image Classification on ImageNet

Leaderboard
Dataset

Backpropagation

- Overview of how we compute neural network gradient:
- Forward propagation :
- Compute $\mathrm{Zi}_{\mathrm{i}}\left(\mathrm{l}\right.$ from Xi_{i}.
- Compute Zi (2) from Zi (1) .
- Compute Y _hati from $\mathrm{Zi}_{\mathrm{i}(\mathrm{m})}$, and use this to compute error.
- Backpropagation :
\therefore Compute gradient with respect to regression weights ' v '.
- Compute gradient with respect to $\mathrm{Zi}_{\mathrm{i}}(\mathrm{m})$ weights $\mathrm{W}_{(\mathrm{m})}$.
- Compute gradient with respect to $\mathrm{Zi}_{\mathrm{i}(\mathrm{m}-1)}$ weights $\mathrm{W}_{(\mathrm{m}-1)}$.
- Compute gradient with respect to $\mathrm{Zi}_{(1)}$ weights $\mathrm{W}_{(1)}$.

- "Backpropagation" is the chain rule plus some bookkeeping for speed.

Backpropagation

- Instead of the next few bonus slides, I HIGHLY recommend watching this video from former UBC master's student Andrej
Karpathy (of OpenAI, former director of AI and Autopilot Vision at Tesla)
- https://www.youtube.com/watch?v =i94OvYb6noo

Backpropagation
Let's illustrate backpropagation in a simple setting: - 1 training example, 3 hidden layers, 1 hidden "unit" in layer.

$$
\begin{aligned}
& f\left(w^{(1)}, w^{(2)}, w^{(3)}, v\right)=\frac{1}{2}\left(\hat{y}_{i}-y_{i}\right)^{2} \text { where } \hat{y}_{i}=v h\left(w^{(3)} h\left(w^{(2)} h\left(w^{(1)} x_{i}\right)\right)\right) \\
& \frac{2 f}{2 v}=r h\left(w^{(3)} h\left(w^{(2)} h\left(w^{(1)} x_{i}\right)\right)\right)=r h\left(z_{i}^{(3)}\right) \\
& \frac{2 f}{2 w^{(3)}}=r v h^{\prime}\left(w^{(3)} h\left(w^{(2)} h\left(w^{(1)} x_{i}\right)\right)\right) h\left(w^{(2)} h\left(w^{(1)} x_{i}\right)\right)=r v h^{\prime}\left(z_{i}^{(3)}\right) h\left(z_{i}^{(2)}\right)
\end{aligned}
$$

Backpropagation
Let's illustrate backpropagation in a simple setting:

- 1 training example, 3 hidden layers, 1 hidden "unit" in layer.

$$
\begin{aligned}
& f\left(w^{(1)}, w^{(2)}, w^{(3)}, v\right)=\frac{1}{2}(\underbrace{\hat{y}_{i}-y_{i}})^{2} \text { where } \hat{y}_{i}=v h\left(w^{(3)} h\left(w^{(2)} h\left(w^{(1)} x_{i}\right)\right)\right) \\
& \frac{2 f}{2 v}=r h\left(w^{(3)} h\left(w^{(2)} h\left(w^{(1)} x_{i}^{r}\right)\right)\right)=r h\left(z_{i}^{(3)}\right) \\
& \frac{2 f}{2 w^{(3)}}=r v h^{\prime}\left(w^{(3)} h\left(w^{(2)} h\left(w^{(1)} x_{i}\right)\right)\right) h\left(w^{(2)} h\left(w^{(1)} x_{i}\right)\right)=r \underbrace{v h^{\prime}\left(z_{i}^{(3)}\right)} h\left(z_{i}^{(2)}\right) \\
& \frac{2 f}{2 w^{(2)}}=r v h^{\prime}\left(W^{(3)} h\left(w^{(2)} h\left(w^{(1)} x_{i}\right)\right)\right) w^{(3)} h^{\prime}\left(w^{(2)} h\left(w^{(1)} x_{i}\right)\right) h\left(w^{(1)} x_{i}\right)=\underbrace{r^{(3)} W^{(3)} h^{\prime}\left(z_{i}^{(2)}\right)}) h_{\left(z^{(1)}\right)} \\
& \frac{2 f}{2 w^{(11)}}=r v h^{\prime}\left(w^{(1)} h\left(w^{(2)} h\left(w^{\prime \prime \prime} x_{i} \mid\right) w^{(3)} h^{\prime}\left(w^{(1)}\left(w_{i}^{(1)},\right)\right) w^{(2)} h^{\prime}\left(w^{\prime \prime}\right) x_{i}\right) x_{i}=r^{(2)} W^{(2)} h^{\prime}\left(z_{i}^{(1)}\right) x_{i}\right.
\end{aligned}
$$

Backpropagation
Let's illustrate backpropagation in a simple setting:
-1 training example, 3 hidden layers, 1 hidden "unit" in layer.

$$
\begin{aligned}
& \frac{2 f}{2 v}=r h\left(z_{i}^{(3)}\right) \\
& \frac{2 f}{2 w^{(3)}}=r v h^{\prime}\left(z_{i}^{(3)}\right) h\left(z_{i}^{(2)}\right) \\
& \frac{3 f}{2 w^{(2)}}=r^{(3)} W^{(3)} h^{\prime}\left(z_{i}^{(2)}\right) h\left(z^{(1)}\right) \\
& \frac{2 f}{2 w^{(11)}}=r^{(2)} W^{(2)} h^{\prime}\left(z_{i}^{(1)}\right) x_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2 f}{2 v_{c}}=r h\left(z_{i c}^{(3)}\right) \\
& \frac{2 f}{2 w_{c c}^{(3)}}=\underbrace{r v_{c} h^{\prime}\left(z_{i c}^{(3)}\right)}_{c} h\left(z_{i c}^{(2)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2 f}{2 W_{c j}^{(1)}}=\left[\sum_{c^{\prime}=1}^{k}, c_{c \mid c}^{(2)} W_{c c c}^{(2)}\right] h^{\prime}\left(2_{c}^{(1)}\right) x_{j}
\end{aligned}
$$

- Only the first ' r ' changes if you use a different loss..
- With multiple hidden units, you get extra sums.

Efficient if you store the sums rather than computing from scratch.

Backpropagation

- We've made backprop details bonus material
- Do you need to know how to do this?
- Exact details are probably not vital (there are many implementations).
- "Automatic differentiation" is now standard and has same cost.
- But understanding basic idea helps you know what can go wrong.
- Or give hints about what to do when you run out of memory.
- See discussion by a neural network expert (Andrej!)
- https://karpathy.medium.com/yes-you-should-understand-backprop-e2f06eab496b

Backpropagation

- You should know cost of backpropagation:
- Forward pass dominated by matrix multiplications by $\mathrm{W}_{\text {(1) }}$, W (2), W (3), and 'v'.
- If have ' m ' layers and all $z i$ have ' k ' elements, cost would be $\mathrm{O}\left(\mathrm{dk}+\mathrm{mk}^{2}\right)$.
- Backward pass has same cost as forward pass.

Next

- Finish discussion of how to train deep neural networks
- algorithms, tips, and tricks, and miscellaneous key info

