CPSC 340:
Machine Learning and Data Mining



Admin

- Course surveys
— Please fill them out
— We care deeply about your education, so we take them very seriously
— You will be able to evaluate the class overall, and then Prof. Schmidt and I separately
— As always, please remember we’re real people, so both praise and constructive criticism

feedback are great. Please avoid personal, hurtful, or unconstructive negative
comments. Tone matters!
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Supervised Learning Roadmap
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Regression vs. Binary Classification

* For regression problems, our prediction (ignoring biases) is:
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* And we might train to minimize the squared residual:
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Regression vs. Binary Classification

* For binary classification problems, our prediction is:
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* And we might train to minimize the logistic loss:
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— This is like Iog|St|c regression with learned features.
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Neural Network for Multi-Class Classification

* Multi-class classification a neural network:
— Input is connected to a hidden layer (same as regression and binary case).
Hidden layer is connected to multiple output units (one for each label.).
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We can predict by maximizing o,. over all ‘c’.
We can convert to probabilities for each class using softmax to the o,. values:

eXp(oic )

\.—/_——

% Qkf(oic')

0\1’ V; A(WK’)
0, = v, h(IW)

of ravamlffs-’

¢! msgeg

C=
We train by minimizing negative log of this probability (softmax loss, summed across examples).
Notice that we changed tasks by only changing last layer (and loss function).

aka "cross entropy"(good
intuitive explanation here)


https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e
https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e
https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e

Adding Bias Variables
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Deep Learning
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Deep Learning Terminology

- “layer” = number of layers of weights
(numWs + V)

- “hidden layer” = number of activation layers (Zs)
(not including inputs)

- do not assume people are consistent with this language

hidden layer 2 output layer

hidden layer 1

input layer
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Neural Networks
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Neural Networks

e Point of XOR was not that you need k>d
* |nstead
e an example of how that can make things easier
e and how a transformation can make things linearly separable

e Cover’s theorem: “The probability that classes are linearly separable increases when
the features are nonlinearly mapped to a higher dimensional feature space.” [Coover

1965]
e The output layer requires linear separability.
e The purpose of the hidden layers is to make the problem linearly separable!

e Multi-layer networks thus allow “non-linear regression”

From:


http://130.236.96.13/edu/courses/TBMI26/pdfs/lectures/le5.pdf

Neural Networks

e Multi-layer networks thus allow “non-linear regression”

Sigmoid Function

Figure 18.23  (a) The result of combining two opposite-facing soft threshold functions to
produce a ridge. (b) The result of combining two ridges to produce a bump.

* and a threshold




Neural Networks

e Multi-layer networks thus allow “non-linear regression”
e Single hidden layer (often very large):

- can represent any continuous function
* Two hidden layers:
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Hierarchically composed feature representations

Higher-level
representation

Input (sensory)

Detected face

Face detectors

Face parts

Edge
detectors
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Hierarchy of feature representations
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Learning features relevant to the data
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Learning features relevant to the data
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* | give a whole talk on work my colleagues and | have done in visualizing deep neural
networks that | think you will enjoy

* Deep Learning Overview & Visualizing What Deep Neural Networks Learn

* https://www.youtube.com/watch?v=3Ip9eN5JE2A

Lehman, Clune, & Risi 2015



“Hierarchies of Parts” Motivation for Deep Learning

Each “neuron” might recognize
a “part” of a digit.
— “Deeper”’ neurons might recognize
combinations of parts .

— Represent complex objects as
hierarchical combinations of
re -useable parts (a simple “grammar’).

Watch the ftull video here:
— htps://www youtube com/watch?v=aircArnvnKk

Theory:
— 1 big -enough hidden layer already gives universal approximation.

— But some functions require exponentially -fewer parameters to approximate with
more layers (can fight curse of dimensionality).



Deep Learning Terminology

“layer” = number of layers of weights
(numWs + V)

“hidden layer” = number of activation layers (Zs)
(not including inputs, )

- Everyone: use both terms to describe this net




Why Multiple Layers?

e Historically, deep learning was motivated by “connectionist” ideas:

— Brain consists of network of highly-connected simple units.
* Same units repeated in various places.

Computations are done in parallel.

Information is stored in distributed way.

Learning comes from updating of connection strengths.

One learning algorithm used everywhere.




Why Multiple Layers?

* And theories on the hierarchical organization of the visual system:
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Why Multiple Layers?

* The idea of multi-layer designs appears in engineering too:

— Deep hierarchies in camera design:

PPPPPP




Why Multiple Layers?

 There are also mathematical motivations for using multiple layers:

— 1 layer gives us a universal approximator.
* But this layer might need to be huge.

— With deep networks:

* Some functions can be approximated with exponentially-fewer parameters.
— Compared to a network with 1 hidden layer.

e So deep networks may need fewer parameters than “shallow but wide” networks.

— And hence may need less data to train.

* Empirical motivation for using multiple layers:
— In many domains deep networks have led to unprecedented performance.



Deep Learning
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Summary

- Neural networks learn features zi for supervised learning.

- Sigmoid function avoids degeneracy by introducing non-linearity.

— Universal approximator with large - enough ‘k’.
- Biological motivation for (deep) neural networks.

- Deep learning considers neural networks with many hidden layers.

— Can more- efficiently represent some functions.

- Unprecedented performance on difficult pattern recognition tasks.
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Multiple Word Prototypes
- What about homonyms and polysemy?
— The word vectors would need to account for all meanings.
- More recent approaches:
— Try to cluster the different contexts where words appear.
— Use different vectors for different contexts . /
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Why z i= Wxi? -

- In PCA we had that the optimal Z = XW t(WW T) -1.
- If W had normalized+orthogonal rows, Z = XW 1 (since WW 1=1).

— So zi= WX i1n this normalized+orthogonal case.

- Why we would use z i= WX i1n neural networks?

— We didn’t enforce normalization or orthogonality.

- Well, the value W 1(WW 1) - 115 just “some matrix”.

— You can think of neural networks as just directly learning this matrix .



(pause)
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Recap of Last Time
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Hierarchically composed feature representations
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Detected face

Face detectors

Face parts

Edge
detectors

E -

Hierarchy of feature representations

p—

Ovahenn
Ilﬁlﬂ

_<E®] =k |
NEEAN=al
ACREY=N -
IE-%.I(!'

[ASKINY
NEREL
NN,
=10\ Im=

Face detectors

Face parts
(combination
of edges)

edges

pixels

Lee et al, 2009.



“Hierarchies of Parts” Motivation for Deep Learning

Each “neuron” might recognize
a “part” of a digit.
— “Deeper”’ neurons might recognize
combinations of parts .

— Represent complex objects as
hierarchical combinations of
re -useable parts (a simple “grammar’).

Watch the ftull video here:
— htps://www youtube com/watch?v=aircArnvnKk

Theory:
— 1 big -enough hidden layer already gives universal approximation.

— But some functions require exponentially -fewer parameters to approximate with
more layers (can fight curse of dimensionality).
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ML and Deep Learning History

1950 and 1960s: Initial excitement.

— Perceptron : linear classifier and stochastic gradient (roughly).

— “the embryo of an electronic computer that [the Navy] expects will be able

to walk, talk, see, write, reproduce itself and be conscious of its existence.”
New York Times (1958).

- https:// www.youtube.com/watch?v=IEFRtz68m-8

T
w

— Object recognition
assigned to students as a
summer project

- Then drop in popularity:




ML and Deep Learning History

1970 and 1980s: Connectionism (brain -inspired ML)

— Want “connected networks of sitmple units ™

- Use parallel computation and distributed representations.
— Adding hidden layers zi increases expressive power.

- With 1 layer and enough sigmoid units, a universal approximator.

— Success 1n optical character recognition.
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FEATIRE FECEFTIVE FELD 9128

RETINA PHOTORECEPTOR S

l GANGLION CELL Qe

THALAMUS LGN o Q .....
l iR sevouue wees @ @
Vi SIMPLE CELL S~ I
o B
T
V2 S 4
TEXTURE-DEFINED  ILLUSORY BORDER
CONTOURS CONTOUR OWNERSHP Vv e
w3
V4 £ e
CURVATURE LUMINANCE-VARMNT YT
SELECTMITY HE
VENTRAL DORSAL
PATHWAY PATHWAY
T VA & % A

SIMPLE SHAPE L
ELEMENTS

TE 6@ # K-



bonuS!

ML and Deep Learning History

1990s and early -2000s: drop 1in popularity.
— It proved really difficult to get multi - layer models working robustly.

— We obtained similar performance with simpler models:

- Rise in popularity of logistic regression and SVMs with regularization and kernels .
— Lots of internet successes (spam filtering, web search, recommendation).

— ML moved closer to other fields like numerical optimization and statistics.
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ML and Deep Learning History

Late 2000s: push to revive connectionism as “deep learning .
— Canadian Institute For Advanced Research (CIFAR) NCAP program:

- “Neural Computation and Adaptive Perception”.
- Led by Geoff Hinton, Yann LeCun , and Yoshua Bengio
- Unsupervised successes: “deep belief networks™ and “autoencoders”.

- Could be used to initialize deep neural networks.

Deep Learning learns layers of features
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2010s: DEEP LEARNING!!! -

- Bigger datasets, bigger models, parallel computing (GPUs/clusters).

— And some tweaks to the models from the 1980s.
- Huge improvements 1n automatic speech recognition (2009).
— All phones now have deep learning.

- Huge improvements in computer vision (2012).
— Changed computer vision field almost instantly:. |
— Now 1s how most CV (and Al) 1s done _ | B person

chair
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2010s: DEEP LEARNING!!! -

- Media hype:
— “How many computers to 1dentify a cat? 16,000”
New York Times (2012).

— “Why Facebook is teaching its machines to think like humans™
Wired (2013).

— “What 1s ‘deep learning’ and why should businesses care?”
Forbes (2013).

— “Computer eyesight gets a lot more accurate”
New York Times (2014).

- 2015: huge improvement 1n language understanding



bomAS_[

ImageNet Challenge

- Millions of labeled images, 1000 object classes.
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ImageNet Challenge

Object detection task:

— Single label per image.

— Humans: ~5% error.
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ImageNet Challenge

Object detection task:

— Single label per image.

— Humans: ~5% error.
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ImageNet Challenge

Object detection task:

— Single label per image.

— Humans: ~5% error.
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ImageNet Challenge '

- Object detection task: Image classification
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ImageNet Challenge

- Object detection task:
— Single label per image.

— Humans: ~5% error.
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ImageNet Challenge

- Object detection task:

— Single label per image.

Classification Localization

o
w
o
o,
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— Humans: ~5% error. l 1 -

- 2015: Won by Microsoft Asia

— 3 . 6% CITOT. ILSVRC year ILSVRC year
— 152 layers, introduced “ResNets™.

— Also won ““localization” (finding location of objects in images).

Classification error
Localization error

o o

o
o

- 2016: Chinese University of Hong Kong:

— Ensembles of previous winners and other existing methods.

- 2017: fewer entries, organizers decided this would be last year.
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Backpropagation

Overview of how we compute neural network gradient:

— Forward propagation :
- Compute zi () from Xi.

- Compute zi @) from zi ).

- Compute Y _hati from zim), and use this to compute error.

— Backpropagation :

- Compute gradient with respect to regression weights ‘v’.
- Compute gradient with respect to zi m) weights Wm).

- Compute gradient with respect to zi m- 1) weights Wm-1).

- Compute gradient with respect to zi 1) weights Wq).

“Backpropagation” is the chain rule plus some bookkeeping for speed.
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Backpropagation

- Instead of the next few bonus slides, | HIGHLY recommend
watching this video from former UBC master’s student Andre;
Karpathy (of OpenAl, former director of Al and Autopilot Vision at Tesla)

— https://www.youtube.com/watch?v =1940vYbbnoo



Backpropagation Tv
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- Let’s 1llustrate backpropagation in a simple setting: l\-‘”
— 1 training example, 3 hidden layers, 1 hidden “unit” in layer. T\ o)
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Backpropagation

- Let’s 1llustrate backpropagation in a simple setting:

— 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

(02 = A 3 (2 ()
POV =2 (7 3)* whee =vh (Wb 4w )
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Backpropagation

- Let’s 1llustrate backpropagation in a simple setting:

— 1 training example, 3 hidden layers, 1 hidden “unit” in layer.
f e

< = r ;\(2,‘“)) g\fv - k(zilc”)
%(a) ¢ vh( m) h(z (2)) W(.‘) C h( ;)) "\(z 2
%\/“’ = (3) W‘;)}\ ( (z))u 0 af

2wl17 ——[ (37 (ls‘) L {:(c”) }\ Y
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Twl ) W Z, )X, ZW(I) [i () ()]h(’éé )X
— Only the first ‘r’ changes if you use a different loss,
— With multiple hidden units, you get extra sumes.

ﬁ

- Efficient if you store the sums rather than computing from scratch.




Backpropagation

-+ We’ve made backprop details bonus material

- Do you need to know how to do this?

— Exact details are probably not vital (there are many implementations).
— “Automatic differentiation ” 1s now standard and has same cost.
— But understanding basic 1dea helps you know what can go wrong.

- Or give hints about what to do when you run out of memory.

— See discussion by a neural network expert (Andrej!)
- https://karpathy.medium.com/yes-you-should-understand-backprop-e2{06eab496b

(‘5,4 Andrej Karpathy H

ok e’
Z Dec 19,2016 - 7minread - @ Listen

Yes you should understand backprop

When we offered CS231n (Deep Learning class) at Stanford, we intentionally
designed the programming assignments to include explicit calculations

involved in backpropagation on the lowest level. The students had to



Backpropagation

- You should know cost of backpropagation:
— Forward pass dominated by matrix multiplications by W (1), W ), W 3), and ‘v’.

- If have ‘m’ layers and all zihave ‘k’ elements, cost would be O( dk + mk?).

— Backward pass has same cost as forward pass.

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

output layer

Sl

..




Next

- Finish discussion of how to train deep neural networks

— algorithms, tips, and tricks, and miscellaneous key info



