
CPSC 340:
Machine Learning and Data Mining

Multi-Dimensional Scaling



Last Time: Variants of PCA
• Solve the PCA objective function by alternative minimization and 

gradient descent.
• Variants of PCA: robust PCA, binary PCA, regularized PCA. 
• Non-negative matrix factorization, topic modeling. 
• We discussed recommender systems:
– Predicting what ratings users have for different products.
– content-based filtering (supervised): Extract features of users and 

products, and use these to predict rating.
– collaborative filtering (unsupervised): Methods that only looks at ratings, 

not features of products.



Visualization High-Dimensional Data
• PCA for visualizing high-dimensional data:
– Use PCA ‘W’ matrix to linearly transform data to get the zi values.
– And then we plot the zi values as locations in a scatterplot.

http://www.turingfinance.com/artificial-intelligence-and-statistics-principal-component-analysis-and-self-organizing-maps/
http://scienceblogs.com/gnxp/2008/08/14/the-genetic-map-of-europe/



Visualization High-Dimensional Data
• PCA for visualizing high-dimensional data:
– Use PCA ‘W’ matrix to linearly transform data to get the zi values.
– And then we plot the zi values as locations in a scatterplot.

• An common alternative is multi-dimensional scaling (MDS):
– Directly optimize the pixel locations of the zi values.

• “Gradient descent on the points in a scatterplot”.

– Needs a “cost” function saying how “good” the zi locations are.
• Traditional MDS cost function:



Multi-Dimensional Scaling
• Multi-dimensional scaling (MDS):
– Directly optimize the final locations of the zi values.
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– Non-parametric dimensionality reduction and visualization:
• No ‘W’: just trying to make zi preserve high-dimensional distances between xi.



Multi-Dimensional Scaling
• Multi-dimensional scaling (MDS):
– Directly optimize the final locations of the zi values.

– Non-parametric dimensionality reduction and visualization:
• No ‘W’: just trying to make zi preserve high-dimensional distances between xi.



Multi-Dimensional Scaling
• Multi-dimensional scaling (MDS):
– Directly optimize the final locations of the zi values.

– Non-parametric dimensionality reduction and visualization:
• No ‘W’: just trying to make zi preserve high-dimensional distances between xi.



Multi-Dimensional Scaling
• Multi-dimensional scaling (MDS):
– Directly optimize the final locations of the zi values.

– Non-parametric dimensionality reduction and visualization:
• No ‘W’: just trying to make zi preserve high-dimensional distances between xi.



Multi-Dimensional Scaling
• Multi-dimensional scaling (MDS):
– Directly optimize the final locations of the zi values.

• Cannot use SVD to compute solution:
– Instead, do gradient descent on the zi values.
– You “learn” a scatterplot that tries to visualize high-dimensional data.
– Not convex and sensitive to initialization.

• And solution is not unique due to various factors like translation and rotation.



Different MDS Cost Functions
• The default MDS objective function using the Euclidean distance: 

• We could consider different distances/similarities:

– Where the functions are not necessarily the same:
• d1 is the high-dimensional distance we want to match.
• d2 is the low-dimensional distance we can control.
• d3 controls how we compare high-/low-dimensional distances.



PCA is a Special MDS
• Let d1 and d2 be the dot product, and d3 the square distance



PCA is a Special MDS
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Next Topic: t-SNE



Data on Manifolds
• Consider data that lives on a low-dimensional “manifold”.
– Where Euclidean distances make sense “locally”.

• But Euclidean distances may not make sense “globally”.

– Wikipedia example: Surface of the Earth is “locally” flat.
• Euclidean distance accurately measures distance “along the surface” locally.
• For far points Euclidean distance is a poor measure of distance “along the surface”.

http://www.biomedcentral.com/content/pdf/1471-2105-13-S7-S3.pdf



Data on Manifolds
• Consider data that lives on a low-dimensional “manifold”.
– Where Euclidean distances make sense “locally”.

• But Euclidean distances may not make sense “globally”.

• Example is the ‘Swiss roll’:

http://www.biomedcentral.com/content/pdf/1471-2105-13-S7-S3.pdf



Example: Manifolds in Image Space
• Slowly-varying image transformations exist on a manifold:

• “Neighbouring” images are close in Euclidean distance.
– But distances between very-different images are not reliable.

https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction
http://wearables.cc.gatech.edu/paper_of_week/isomap.pdf



Learning Manifolds
• With usual distances, PCA/MDS do not discover non-linear manifolds.

http://www.peh-med.com/content/9/1/12/figure/F1



Learning Manifolds
• With usual distances, PCA/MDS do not discover non-linear manifolds.

• We could use change of basis or kernels: but still need to pick basis.
http://www.peh-med.com/content/9/1/12/figure/F1



Sammon’s Mapping
• Challenge for most MDS models: they focus on large distances.
– Leads to “crowding” effect like with PCA.

• Early attempt to address this is Sammon’s mapping:
– Weighted MDS so large/small distances are more comparable.

– Denominator reduces focus on large distances.

http://www.mdpi.com/1422-0067/15/7/12364/htm



ISOMAP
• ISOMAP is latent-factor model for visualizing data on manifolds:



Sammon’s Map vs. ISOMAP vs. PCA (MNIST)

http://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf



Sammon’s Map vs. ISOMAP vs. t-SNE (MNIST)

• A ‘modern’ way to visualize manifolds and clusters is t-SNE.
http://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
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Sammon’s Map vs. ISOMAP vs. t-SNE (MNIST)

http://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf



t-Distributed Stochastic Neighbour Embedding
• One key idea in t-SNE: 
– Focus on distance to “neighbours” (allow large variance in other distances)



t-Distributed Stochastic Neighbour Embedding

Interactive demo: https://distill.pub/2016/misread-tsne

https://distill.pub/2016/misread-tsne


The Loss Function
• The Kullback–Leibler divergence	between	the	affinity	
(similarity)	matrix	P from	the	high-dimensional	data	and	the	
affinity	matrix	from	the	low-dimensional	data	Q

• The loss is optimized via gradient descent. 
• Keep nearby data points in the high-dimensional space nearby in 

the low-dimensional space, while push all data points in the low-
dimensional space apart from each other.



The High-dimensional Affinity Matrix
• The high-dimensional affinity matrix

• Typically symmetrize and normalize to be a probability mass 
function

• The data point-dependent parameter 𝛔i is adaptively calculated to  
achieve the desired perplexity (30 by default)



The Low-dimensional Affinity Matrix
• The low-dimensional affinity matrix qij:

• Here we typically use the Student’s t distribution with 𝞶=1 (the 
Cauchy distribution to measure the similarity between points).



Other Details
• T-SNE is sensitive to initialization, typically we initial Z by PCA. 
• To compute the high-dimensional affinity matrix can be slow 

O(n2d), we use approximate k-NN search to only compute the 
affinities between a point and its k-NNs (k = 3 * perplexity). 

• We set both pii and qii = 0 (only pairwise similarities are of interest).
• Optimization trick (early exaggeration – multiply the attractive 

force by 12 for the first 250 iterations).
• Speedup calculating the repulsive force (the FFT-SNE algorithm). 
• A more recent nonlinear dimension reduction tool: UMAP 

(Uniform manifold approximation and projection for dimension 
reduction, published in 2018, >10k citations). 

https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426


t-SNE on Product Features

http://blog.kaggle.com/2015/06/09/otto-product-classification-winners-interview-2nd-place-alexander-guschin/



t-SNE on Leukemia Heterogeneity

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076922/



UMAP on Mouse Brain Data
• 4 million single-cell transcriptomes from adult mouse brain labeled 

by source brain region. 

https://alleninstitute.org/resource/what-is-a-umap/



ArXiv Machine Learning Landscape

https://lmcinnes.github.io/datamapplot_examples/ArXiv_data_map_example.htm
l



Next Topic: Word2Vec



Latent-Factor Representation of Words
• For natural language, we often represent words by an index.
– E.g., “cat” is word 124056 among a “bag of words”.

• But this may be inefficient:
– Should “cat” and “kitten” features be related is some way?

• We want a latent-factor representation of individual words:
– Closeness in latent space should indicate similarity.
– Distances could represent meaning?

• Recent alternative to PCA is word2vec…



Using Context
• Consider these phrases:
– “the cat purred”
– “the kitten purred”

– “black cat ran”
– “black kitten ran”

• Words that occur in the same context likely have similar meanings.

• Word2vec uses this insight to design an MDS distance function.



Word2Vec (Continuous Bag of Words)
• A common word2vec approaches (called continuous bag of words):
– Each word ‘i’ is represented by a vector of real numbers zi.
– Training data: sentence fragments with “hidden” middle word:

• “We introduce basic principles and techniques in”
• “the fields of data mining and machine”
• “tools behind the emerging field of data”
• “techniques are now running behind the scenes”
• “discover patterns and make predictions in various”
• “the core data mining and machine learning”
• “with motivating applications from a variety of”

– Train so that zi of “hidden” words are similar to zi of surrounding words.



Word2Vec (Continuous Bag of Words)
• Continuous bag of words model probability of middle word ‘i’ as:

• We use gradient descent on negative logarithm of these probabilities:
– Makes ziTzj big for words appearing in same context (making zi close to zj).
– Makes ziTzj small for words not appearing together (makes zi and zj far).

• Once trained, you use these zi as features for language tasks.
– Tends to work much better than bag of words.
– Allows you to get useful features of words from unlabeled text data.



Word2Vec Example
• MDS visualization of a set of related words:

• Distances between vectors might represent semantics.
http://sebastianruder.com/secret-word2vec



Word2Vec
• Subtracting word vectors to find related vectors.

• Word vectors for 157 languages here.
https://arxiv.org/pdf/1301.3781.pdf

https://fasttext.cc/docs/en/crawl-vectors.html


Summary
• Multi-dimensional scaling is a non-parametric latent-factor model.
• Different MDS distances/losses/weights usually gives better results.
• Manifold: space where local Euclidean distance is accurate.
– Structured data like images often form manifolds in space.

• t-SNE is an MDS method focusing on matching small distances.
• Word2vec:
– Latent-factor (continuous) representation of words.
– Based on predicting word from its context (or context from word).

• Next time: Neural Networks.



Word2Vec (Skip-Gram)
• A common word2vec approaches (skip gram):
– Each word ‘i’ is represented by a vector of real numbers zi.
– Training data: sentence fragments with “hidden” surrounding word:

• “We introduce basic principles and techniques in”
• “the fields of data mining and machine”
• “tools behind the emerging field of data”
• “techniques are now running behind the scenes”
• “discover patterns and make predictions in various”
• “the core data mining and machine learning”
• “with motivating applications from a variety of”

– Train so that zi of “hidden” words are similar to zi of surrounding words.
• Uses same probability as continuous bag of words.

– But denominator sums over all possible surrounding words (often just sample terms for speed).



Stochastic Gradient for SVDfeature
• Common approach to fitting SVDfeature is stochastic gradient.
• Previously you saw stochastic gradient for supervised learning:

• Stochastic gradient for SVDfeature (formulas as bonus):



SVDfeature with SGD: the gory details



Tensor Factorization
• Tensors are higher-order generalizations of matrices:

• Generalization of matrix factorization is tensor factorization:

• Useful if there are other relevant variables:
• Instead of ratings based on {user,movie}, ratings based {user,movie,group}.
• Useful if you have groups of users, or if ratings change over time.



Field-Aware Matrix Factorization
• Field-aware factorization machines (FFMs):
– Matrix factorization with multiple zi or wc for each example or part.
– You choose which zi or wc to use based on the value of feature.

• Example from “click through rate” prediction:
– E.g., predict whether “male” clicks on “nike” advertising on “espn” page.
– A previous matrix factorization method for the 3 factors used:

– FFMs could use:
• wespnA is the factor we use when multiplying by a an advertiser’s latent factor.
• wespnG is the factor we use when multiplying by a group’s latent factor.

• This approach has won some Kaggle competitions (link),
and has shown to work well in production systems too (link).

https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf
https://arxiv.org/pdf/1701.04099.pdf


Warm-Starting
• We’ve used data {X,y} to fit a model.
• We now have new training data and want to fit new and old data.

• Do we need to re-fit from scratch?

• This is the warm starting problem.
– It’s easier to warm start some models than others.



Easy Case: K-Nearest Neighbours and Counting
• K-nearest neighbours:
– KNN just stores the training data, so just store the new data.

• Counting-based models:
– Models that base predictions on frequencies of events.
– E.g., naïve Bayes.

– Just update the counts:

– Decision trees with fixed rules: just update counts at the leaves.



Medium Case: L2-Regularized Least Squares
• L2-regularized least squares is obtained from linear algebra:

– Cost is O(nd2 + d3) for ‘n’ training examples and ‘d’ features.
• Given one new point, we need to compute:
– XTy with one row added, which costs O(d).
– Old XTX plus xixiT, which costs O(d2). 
– Solution of linear system, which costs O(d3).
– So cost of adding ‘t’ new data point is O(td3).

• With “matrix factorization updates”, can reduce this to O(td2).
– Cheaper than computing from scratch, particularly for large d.



Medium Case: Logistic Regression
• We fit logistic regression by gradient descent on a convex function.

• With new data, convex function f(w) changes to new function g(w).

• If we don’t have much more data, ‘f’ and ‘g’ will be “close”.
– Start gradient descent on ‘g’ with minimizer of ‘f’.
– You can show that it requires fewer iterations.



Hard Cases: Non-Convex/Greedy Models
• For decision trees:
– “Warm start”: continue splitting nodes that haven’t already been split.
– “Cold start”: re-fit everything.

• Unlike previous cases, this won’t in general give same result as re-fitting:
– New data points might lead to different splits higher up in the tree.

• Intermediate: usually do warm start but occasionally do a cold start.

• Similar heuristics/conclusions for other non-convex/greedy models:
– K-means clustering.
– Matrix factorization (though you can continue PCA algorithms).



Different MDS Cost Functions
• MDS default objective function with general distances/similarities:

• A possibility is “classic” MDS with d1(xi,xj) = xi
Txj and d2(zi,zj) = zi

Tzj.
– We obtain PCA in this special case (centered xi, d3 as the squared L2-norm).
– Not a great choice because it’s a linear model.



Different MDS Cost Functions
• MDS default objective function with general distances/similarities:

• Another possibility: d1(xi,xj) = ||xi – xj||1 and d2(zi,zj) = ||zi – zj||.
– The zi approximate the high-dimensional L1-norm distances.

http://www.mdpi.com/1422-0067/15/7/12364/htm



Sammon’s Mapping
• Challenge for most MDS models: they focus on large distances.
– Leads to “crowding” effect like with PCA.

• Early attempt to address this is Sammon’s mapping:
– Weighted MDS so large/small distances are more comparable.

– Denominator reduces focus on large distances.

http://www.mdpi.com/1422-0067/15/7/12364/htm
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• Challenge for most MDS models: they focus on large distances.
– Leads to “crowding” effect like with PCA.

• Early attempt to address this is Sammon’s mapping:
– Weighted MDS so large/small distances are more comparable.
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Geodesic Distance on Manifolds
• Consider data that lives on a low-dimensional “manifold”.
– With usual distances, PCA/MDS will not discover non-linear manifolds.

• We need geodesic distance: the distance through the manifold.

http://www.biomedcentral.com/content/pdf/1471-2105-13-S7-S3.pdf
http://wearables.cc.gatech.edu/paper_of_week/isomap.pdf



ISOMAP
• ISOMAP can “unwrap” the roll:
– Shortest paths are approximations to geodesic distances.

• Sensitive to having the right graph:
– Points off of manifold and gaps in manifold cause problems.

http://www.peh-med.com/content/9/1/12/figure/F1



Constructing Neighbour Graphs
• Sometimes you can define the graph/distance without features:
– Facebook friend graph.
– Connect YouTube videos if one video tends to follow another.

• But we can also convert from features xi to a “neighbour” graph:
– Approach 1 (“epsilon graph”): connect xi to all xj within some threshold ε.

• Like we did with density-based clustering.

– Approach 2 (“KNN graph”): connect xi to xj if:
• xj is a KNN of xi OR xi is a KNN of xj.

– Approach 2 (“mutual KNN graph”): connect xi to xj if:
• xj is a KNN of xi AND xi is a KNN of xj.

http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf



Converting from Features to Graph

http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Luxburg07_tutorial_4488%5B0%5D.pdf



ISOMAP
• ISOMAP is latent-factor model for visualizing data on manifolds:

1. Find the neighbours of each point.
• Usually “k-nearest neighbours graph”, or “epsilon graph”.

2. Compute edge weights:
• Usually distance between neighbours.

3. Compute weighted shortest path between all points.
• Dijkstra or other shortest path algorithm.

4. Run MDS using these distances.
http://wearables.cc.gatech.edu/paper_of_week/isomap.pdf



Does t-SNE always outperform PCA?
• Consider 3D data living on a 2D hyper-plane:

• PCA can  perfectly capture the low-dimensional structure.
• T-SNE can capture the local structure, but can “twist” the plane.
– It doesn’t try to get long distances correct.



Graph Drawing
• A closely-related topic to MDS is graph drawing:
– Given a graph, how should we display it?
– Lots of interesting methods: https://en.wikipedia.org/wiki/Graph_drawing

https://en.wikipedia.org/wiki/Graph_drawing


Bonus Slide: Multivariate Chain Rule
• Recall the univariate chain rule:

• The multivariate chain rule:

• Example:



Bonus Slide: Multivariate Chain Rule for MDS
• General MDS formulation:

• Using multivariate chain rule we have:

• Example:



Multiple Word Prototypes
• What about homonyms and polysemy?
– The word vectors would need to account for all meanings.

• More recent approaches:
– Try to cluster the different contexts where words appear.
– Use different vectors for different contexts.



Multiple Word Prototypes

http://www.socher.org/index.php/Main/ImprovingWordRepresentationsViaGlobalContextAndMultipleWordPrototypes


