CPSC 340: Machine Learning and Data Mining

Last Time: Variants of PCA

- Solve the PCA objective function by alternative minimization and gradient descent.
- Variants of PCA: robust PCA, binary PCA, regularized PCA.
- Non-negative matrix factorization, topic modeling.
- We discussed recommender systems:
 - Predicting what ratings users have for different products.
 - content-based filtering (supervised): Extract features of users and products, and use these to predict rating.
 - collaborative filtering (unsupervised): Methods that only looks at ratings, not features of products.

Visualization High-Dimensional Data

- PCA for visualizing high-dimensional data:
 - Use PCA 'W' matrix to linearly transform data to get the z_i values.
 - And then we plot the z_i values as locations in a scatterplot.

http://www.turingfinance.com/artificial-intelligence-and-statistics-principal-component-analysis-and-self-organizing-maps/ http://scienceblogs.com/gnxp/2008/08/14/the-genetic-map-of-europe/

Visualization High-Dimensional Data

- PCA for visualizing high-dimensional data:
 - Use PCA 'W' matrix to linearly transform data to get the z_i values.
 - And then we plot the z_i values as locations in a scatterplot.
- An common alternative is multi-dimensional scaling (MDS):
 - Directly optimize the pixel locations of the z_i values.
 - "Gradient descent on the points in a scatterplot".
 - Needs a "cost" function saying how "good" the z_i locations are.

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \hat{Z}_{j=i+1}^{n} (||z_{i} - z_{j}|| - ||x_{i} - x_{j}||)^{2}$$

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \hat{z}_{i=1} \hat{z}_{j=i+1} (\|z_i - z_j\| - \|x_i - x_j\|)^2$$

- Non-parametric dimensionality reduction and visualization:
 - No 'W': just trying to make z_i preserve high-dimensional distances between x_i.

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \hat{z}_{i=1} \hat{z}_{j=i+1} (||z_i - z_j|| - ||x_i - x_j||)^2$$

- Non-parametric dimensionality reduction and visualization:
 - No 'W': just trying to make z_i preserve high-dimensional distances between x_i.

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \hat{z}_{i=1} \hat{z}_{j=i+1} (\|z_i - z_j\| - \|x_i - x_j\|)^2$$

- Non-parametric dimensionality reduction and visualization:
 - No 'W': just trying to make z_i preserve high-dimensional distances between x_i.

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \hat{z}_{i=1} \hat{z}_{j=i+1} (||z_i - z_j|| - ||x_i - x_j||)^2$$

- Non-parametric dimensionality reduction and visualization:
 - No 'W': just trying to make z_i preserve high-dimensional distances between x_i.

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \hat{z}_{i=1} \hat{z}_{j=i+1} (||z_i - z_j|| - ||x_i - x_j||)^2$$

- Cannot use SVD to compute solution:
 - Instead, do gradient descent on the z_i values.
 - You "learn" a scatterplot that tries to visualize high-dimensional data.
 - Not convex and sensitive to initialization.
 - And solution is not unique due to various factors like translation and rotation.

Different MDS Cost Functions

• The default MDS objective function using the Euclidean distance:

$$f(Z) = \hat{z} \hat{z}_{i=1}^{2} (||z_{i} - z_{j}|| - ||x_{i} - x_{j}||)^{2}$$

• We could consider different distances/similarities:

$$f(Z) = \hat{z}_{j=1} \hat{z}_{j=1+1} d_3(d_2(z_i, z_j) - d_1(x_i, x_j))$$

- Where the functions are not necessarily the same:
 - d₁ is the high-dimensional distance we want to match.
 - d₂ is the low-dimensional distance we can control.
 - d₃ controls how we compare high-/low-dimensional distances.

PCA is a Special MDS

• Let d₁ and d₂ be the dot product, and d₃ the square distance

Note, $\mathbf{K} = \mathbf{X}\mathbf{X}^{\mathrm{T}}$ is called the Gram matrix, which measures the dot-product between data points (centered)

We may be interested in minimizing the distortions in distances after projecting \mathbf{x} to \mathbf{z} , e.g., $\sum_{i,j} (\mathbf{x}_i^{\mathrm{T}} \mathbf{x}_j - \mathbf{z}_i^{\mathrm{T}} \mathbf{z}_j)^2 = \|\mathbf{K} - \mathbf{Z} \mathbf{Z}^{\mathrm{T}}\|_F^2$

Using SVD, we can factorize, $\mathbf{X}\mathbf{X}^{\mathrm{T}} = \mathbf{U}\mathbf{\Lambda}^{1/2}\mathbf{V}^{\mathrm{T}}\mathbf{V}\mathbf{\Lambda}^{1/2}\mathbf{U}^{\mathrm{T}} = \mathbf{U}\mathbf{\Lambda}^{1/2}\mathbf{\Lambda}^{1/2}\mathbf{U}^{\mathrm{T}}$

The best rank-K approximation to K is $\mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\mathrm{T}} = \mathbf{U}\mathbf{\Lambda}^{1/2}\mathbf{\Lambda}^{1/2}\mathbf{U}^{\mathrm{T}}$

Thus, we can get $\mathbf{Z} = \mathbf{U} \mathbf{\Lambda}^{1/2}$ (PCA latent representation and the classic multi-dimensional scaling)

PCA is a Special MDS

Next Topic: *t*-SNE

Data on Manifolds

- Consider data that lives on a low-dimensional "manifold".
 - Where Euclidean distances make sense "locally".
 - But Euclidean distances may not make sense "globally".
 - Wikipedia example: Surface of the Earth is "locally" flat.
 - Euclidean distance accurately measures distance "along the surface" locally.
 - For far points Euclidean distance is a poor measure of distance "along the surface".

if closes, Evelident distance through manifold ~ geodesic distance

Data on Manifolds

- Consider data that lives on a low-dimensional "manifold".
 - Where Euclidean distances make sense "locally".
 - But Euclidean distances may not make sense "globally".
- Example is the 'Swiss roll':

Example: Manifolds in Image Space

• Slowly-varying image transformations exist on a manifold:

Wrist rotation

- "Neighbouring" images are close in Euclidean distance.
 - But distances between very-different images are not reliable.

https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction http://wearables.cc.gatech.edu/paper_of_week/isomap.pdf

Learning Manifolds

• With usual distances, PCA/MDS do not discover non-linear manifolds.

Original data

PCA

Learning Manifolds

• With usual distances, PCA/MDS do not discover non-linear manifolds.

• We could use change of basis or kernels: but still need to pick basis.

Sammon's Mapping

- Challenge for most MDS models: they focus on large distances.
 Leads to "crowding" effect like with PCA.
- Early attempt to address this is **Sammon's mapping**:
 - Weighted MDS so large/small distances are more comparable.

$$f(Z) = \sum_{j=1}^{n} \sum_{j=i+1}^{n} \left(\frac{d_2(z_i, z_j) - d_1(x_i, x_j)}{d_1(x_i, x_j)} \right)^2$$

- Denominator reduces focus on large distances.

ISOMAP

• ISOMAP is latent-factor model for visualizing data on manifolds:

XXX x x * x * x * x * x Find "neighbours" Represent points Weight on Cach of each point and neighbours as a weighted distance ed between points raph Approximate <u>geodesic</u> distance by <u>shortest</u> path through Run MDS X X X X X X X X D= 2 3 ISOMAP 2; values in 10 pr 20 proximate geodesic distances.

• A 'modern' way to visualize manifolds and clusters is *t*-SNE.

t-Distributed Stochastic Neighbour Embedding

- One key idea in *t*-SNE:
 - Focus on distance to "neighbours" (allow large variance in other distances)

t-Distributed Stochastic Neighbour Embedding

Visualizing Data using t-SNE

Laurens van der Maaten

TiCC Tilburg University P.O. Box 90153, 5000 LE Tilburg, The Netherlands

Geoffrey Hinton

Department of Computer Science University of Toronto 6 King's College Road, M5S 3G4 Toronto, ON, Canada LVDMAATEN@GMAIL.COM

HINTON@CS.TORONTO.EDU

Editor: Yoshua Bengio

Cited by 35319

Interactive demo: <u>https://distill.pub/2016/misread-tsne</u>

The Loss Function

 The Kullback–Leibler divergence between the affinity (similarity) matrix P from the high-dimensional data and the affinity matrix from the low-dimensional data Q

$$\mathrm{KL}\left(P \parallel Q
ight) = \sum_{i
eq j} p_{ij} \log rac{p_{ij}}{q_{ij}}$$

- The loss is optimized via gradient descent.
- Keep nearby data points in the high-dimensional space nearby in the low-dimensional space, while push all data points in the lowdimensional space apart from each other.

The High-dimensional Affinity Matrix

• The high-dimensional affinity matrix

$$p_{j|i} = \frac{\exp(-\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} / 2\sigma_{i}^{2})}{\sum_{k \neq i} \exp(-\|\mathbf{x}_{i} - \mathbf{x}_{k}\|^{2} / 2\sigma_{i}^{2})}$$

- Typically symmetrize and normalize to be a probability mass function $p_{ij} = rac{p_{j|i} + p_{i|j}}{2N}$
- The data point-dependent parameter σ_i is adaptively calculated to achieve the desired *perplexity* (30 by default)

$$2^{-\sum_j p_{j|i} \log_2 p_{j|i}}$$

The Low-dimensional Affinity Matrix

• The low-dimensional affinity matrix q_{ii}:

$$\frac{(1 + \|\mathbf{z}_i - \mathbf{z}_j\|^2 / \nu)^{-\frac{\nu+1}{2}}}{\sum_{k,k \neq i} (1 + \|\mathbf{z}_i - \mathbf{z}_k\|^2 / \nu)^{-\frac{\nu+1}{2}}}$$

• Here we typically use the Student's t distribution with v=1 (the Cauchy distribution to measure the similarity between points).

Other Details

- T-SNE is sensitive to initialization, typically we initial Z by PCA.
- To compute the high-dimensional affinity matrix can be slow O(n²d), we use approximate k-NN search to only compute the affinities between a point and its k-NNs (k = 3 * perplexity).
- We set both p_{ii} and q_{ii} = 0 (only pairwise similarities are of interest).
- Optimization trick (early exaggeration multiply the attractive force by 12 for the first 250 iterations).
- Speedup calculating the repulsive force (the FFT-SNE algorithm).
- A more recent nonlinear dimension reduction tool: UMAP (<u>Uniform manifold approximation and projection for dimension</u> reduction, published in 2018, >10k citations).

t-SNE on Product Features

http://blog.kaggle.com/2015/06/09/otto-product-classification-winners-interview-2nd-place-alexander-guschin/

t-SNE on Leukemia Heterogeneity

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076922/

UMAP on Mouse Brain Data

• 4 million single-cell transcriptomes from adult mouse brain labeled by source brain region.

ArXiv Machine Learning Landscape

MEDICAL IMAGE ANALYSIS NATURAL LANGUAGE PROCESSING GRAPH NEURAL NETWORKS AND RELATED ADMANCED TOPICS IN DEEP LEARNING MACHINE LEARNING IN PHYSICS AND FLUID DYNAMICS Reinforcement LEARNING &) **RELATED TOPICS**

https://lmcinnes.github.io/datamapplot_examples/ArXiv_data_map_example.htm

Next Topic: Word2Vec

Latent-Factor Representation of Words

- For natural language, we often represent words by an index.
 - E.g., "cat" is word 124056 among a "bag of words".
- But this may be inefficient:
 - Should "cat" and "kitten" features be related is some way?
- We want a latent-factor representation of individual words:
 - Closeness in latent space should indicate similarity.
 - Distances could represent meaning?
- Recent alternative to PCA is word2vec...

Using Context

- Consider these phrases:
 - "the <u>cat</u> purred"
 - "the kitten purred"
 - "black <u>cat</u> ran"
 - "black <u>kitten</u> ran"
- Words that occur in the same context likely have similar meanings.
- Word2vec uses this insight to design an MDS distance function.

Word2Vec (Continuous Bag of Words)

- A common word2vec approaches (called continuous bag of words):
 - Each word 'i' is represented by a vector of real numbers z_i .
 - Training data: sentence fragments with "hidden" middle word:
 - "We introduce basic principles and techniques in"
 - "the fields of data mining and machine"
 - "tools behind the emerging field of data"
 - "techniques are now running behind the scenes"
 - "discover patterns and make predictions in various"
 - "the core data mining and machine learning"
 - "with motivating applications from a variety of"
 - Train so that z_i of "hidden" words are similar to z_i of surrounding words.

Word2Vec (Continuous Bag of Words)

• Continuous bag of words model probability of middle word 'i' as:

- We use gradient descent on negative logarithm of these probabilities:
 - Makes $z_i^T z_j$ big for words appearing in same context (making z_i close to z_j).
 - Makes $z_i^T z_j$ small for words not appearing together (makes z_i and z_j far).
- Once trained, you use these z_i as features for language tasks.
 - Tends to work much better than bag of words.
 - Allows you to get useful features of words from unlabeled text data.

Word2Vec Example

• MDS visualization of a set of related words:

• Distances between vectors might represent semantics.

Word2Vec

• Subtracting word vectors to find related vectors.

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Table 8 shows words that follow various relationships. We follow the approach described above: the relationship is defined by subtracting two word vectors, and the result is added to another word. Thus for example, *Paris - France + Italy = Rome*. As it can be seen, accuracy is quite good, although

Word vectors for 157 languages <u>here</u>.

Summary

- Multi-dimensional scaling is a non-parametric latent-factor model.
- Different MDS distances/losses/weights usually gives better results.
- Manifold: space where local Euclidean distance is accurate.
 - Structured data like images often form manifolds in space.
- *t*-SNE is an MDS method focusing on matching small distances.
- Word2vec:
 - Latent-factor (continuous) representation of words.
 - Based on predicting word from its context (or context from word).

• Next time: Neural Networks.

Word2Vec (Skip-Gram)

- A common word2vec approaches (skip gram):
 - Each word 'i' is represented by a vector of real numbers z_i .
 - Training data: sentence fragments with "hidden" surrounding word:
 - "We introduce basic principles and techniques in"
 - "the fields of data mining and machine"
 - "tools behind the emerging field of data"
 - "techniques are now running behind the scenes"
 - "discover patterns and make predictions in various"
 - "the core data mining and machine learning"
 - "with motivating applications from a variety of"
 - Train so that z_i of "hidden" words are similar to z_i of surrounding words.
 - Uses same probability as continuous bag of words.
 - But denominator sums over all possible surrounding words (often just sample terms for speed).

Stochastic Gradient for SVD feature

- Common approach to fitting SVDfeature is stochastic gradient.
- Previously you saw stochastic gradient for supervised learning:

 — Choose a random example 'i'

• Stochastic gradient for SVDfeature (formulas as bonus):

SVDfeature with SGD: the gory details $(b)_{je} ctive: \frac{1}{2} \sum_{(i,j) \in R} (\hat{y}_{ij} - y_{ij})^2 with \hat{y}_{ij} = \beta + \beta_j + \beta_j + w^T x_{ij} + (w^j)^T z_i$ Vpdate based on random (i,j): $\beta = \beta - \alpha \Gamma_{ij}$ $\beta_i = \beta_i - \alpha r_{ij}$ $\beta_j = \beta_j - \alpha r_{ij}$ Updates are the sume, but 'p' is always update while Bi and B; are Vydated for <u>Specific</u> user only updated for the specific user + product and product. (Adding regularization adds an extru term)

Tensor Factorization

• Tensors are higher-order generalizations of matrices:

Scalar
$$\alpha = CJ$$
 Vector $\alpha = \left[dx \right] dx$ Matrix $A = \left[dx d \right] Tensor A = \left[dx d \right] dx d$

• Generalization of matrix factorization is tensor factorization:

$$\gamma_{ijm} \approx \sum_{c=1}^{k} W_{jc} z_{ic} v_{mc}$$

- Useful if there are other relevant variables:
 - Instead of ratings based on {user, movie}, ratings based {user, movie, group}.
 - Useful if you have groups of users, or if ratings change over time.

Field-Aware Matrix Factorization

- Field-aware factorization machines (FFMs):
 - Matrix factorization with multiple z_i or w_c for each example or part.
 - You choose which z_i or w_c to use based on the value of feature.
- Example from "click through rate" prediction:
 - E.g., predict whether "male" clicks on "nike" advertising on "espn" page.
 - A previous matrix factorization method for the 3 factors used:
 - FFMs could use:
- Wespr Wnike + Wespn Winde + Wnike Windle WA P + WE P + WE A Wespr Wnike + Wespn Wide + White Winde • wespnA is the factor we use when multiplying by a an advertiser's latent factor.
 - wespnG is the factor we use when multiplying by a group's latent factor.
- This approach has won some Kaggle competitions (link), and has shown to work well in production systems too (link).

Warm-Starting

- We've used data {X,y} to fit a model.
- We now have new training data and want to fit new and old data.

• Do we need to re-fit from scratch?

- This is the warm starting problem.
 - It's easier to warm start some models than others.

Easy Case: K-Nearest Neighbours and Counting

- K-nearest neighbours:
 - KNN just stores the training data, so just store the new data.
- Counting-based models:
 - Models that base predictions on frequencies of events.
 - E.g., naïve Bayes.

- Just update the counts:
$$p("vicodin" | "spam") = (ount of Evicodin, span"s in new and old data(ount of "spam" in new and old data$$

- Decision trees with fixed rules: just update counts at the leaves.

Medium Case: L2-Regularized Least Squares

• L2-regularized least squares is obtained from linear algebra:

$$W = (\chi^{T}\chi + \lambda I)^{-\prime}(\chi^{T}\chi)$$

- Cost is $O(nd^2 + d^3)$ for 'n' training examples and 'd' features.
- Given one new point, we need to compute:
 - $X^{T}y$ with one row added, which costs O(d).
 - Old $X^T X$ plus $x_i x_i^T$, which costs O(d²).
 - Solution of linear system, which costs O(d³).
 - So cost of adding 't' new data point is O(td³).
- With "matrix factorization updates", can reduce this to O(td²).
 - Cheaper than computing from scratch, particularly for large d.

Medium Case: Logistic Regression

- We fit logistic regression by gradient descent on a convex function.
- With new data, convex function f(w) changes to new function g(w).

$$f(u) = \sum_{i=1}^{n} f_i(u)$$
 $g(u) = \sum_{i=1}^{n+1} f_i(u)$

- If we don't have much more data, 'f' and 'g' will be "close".
 - Start gradient descent on 'g' with minimizer of 'f'.
 - You can show that it requires fewer iterations.

Hard Cases: Non-Convex/Greedy Models

- For decision trees:
 - "Warm start": continue splitting nodes that haven't already been split.
 - "Cold start": re-fit everything.
- Unlike previous cases, this won't in general give same result as re-fitting:
 New data points might lead to different splits higher up in the tree.
- Intermediate: usually do warm start but occasionally do a cold start.
- Similar heuristics/conclusions for other non-convex/greedy models:
 - K-means clustering.
 - Matrix factorization (though you can continue PCA algorithms).

Different MDS Cost Functions

• MDS default objective function with general distances/similarities:

$$f(Z) = \hat{z} \hat{z}_{j=1}^{n} d_{3}(d_{2}(z_{i}, z_{j}) - d_{1}(x_{i}, x_{j}))$$

- A possibility is "classic" MDS with $d_1(x_i, x_j) = x_i^T x_j$ and $d_2(z_i, z_j) = z_i^T z_j$.
 - We obtain PCA in this special case (centered x_i , d_3 as the squared L2-norm).
 - Not a great choice because it's a linear model.

Different MDS Cost Functions

• MDS default objective function with general distances/similarities:

$$f(Z) = \hat{z}_{j=1} \hat{z}_{j=1+1} d_3(d_2(z_i, z_j) - d_1(x_i, x_j))$$

- Another possibility: $d_1(x_i, x_j) = ||x_i x_j||_1$ and $d_2(z_i, z_j) = ||z_i z_j||$.
 - The z_i approximate the high-dimensional L_1 -norm distances.

Sammon's Mapping

- Challenge for most MDS models: they focus on large distances.
 Leads to "crowding" effect like with PCA.
- Early attempt to address this is **Sammon's mapping**:
 - Weighted MDS so large/small distances are more comparable.

$$f(Z) = \sum_{j=1}^{n} \sum_{j=i+1}^{n} \left(\frac{d_2(z_i, z_j) - d_1(x_i, x_j)}{d_1(x_i, x_j)} \right)^2$$

- Denominator reduces focus on large distances.

Sammon's Mapping

- Challenge for most MDS models: they focus on large distances.
 Leads to "crowding" effect like with PCA.
- Early attempt to address this is **Sammon's mapping**:

- Weighted MDS so large/small distances are more comparable.

http://www.mdpi.com/1422-0067/15/7/12364/htm

Geodesic Distance on Manifolds

- Consider data that lives on a low-dimensional "manifold".
 With usual distances, PCA/MDS will not discover non-linear manifolds.
- We need geodesic distance: the distance *through* the manifold.

ISOMAP

- **ISOMAP** can "unwrap" the roll:
 - Shortest paths are approximations to geodesic distances.

- Sensitive to having the right graph:
 - Points off of manifold and gaps in manifold cause problems.

Constructing Neighbour Graphs

- Sometimes you can define the graph/distance without features:
 - Facebook friend graph.
 - Connect YouTube videos if one video tends to follow another.
- But we can also convert from features x_i to a "neighbour" graph:
 - Approach 1 ("epsilon graph"): connect x_i to all x_j within some threshold ϵ .
 - Like we did with density-based clustering.
 - Approach 2 ("KNN graph"): connect x_i to x_j if:
 - x_j is a KNN of x_i **OR** x_i is a KNN of x_j .
 - Approach 2 ("mutual KNN graph"): connect x_i to x_j if:
 - x_j is a KNN of x_i **AND** x_i is a KNN of x_j .

Converting from Features to Graph

-1

-2

-3

-1

ISOMAP

- ISOMAP is latent-factor model for visualizing data on manifolds:
 - 1. Find the neighbours of each point.
 - Usually "k-nearest neighbours graph", or "epsilon graph".
 - 2. Compute edge weights:
 - Usually distance between neighbours.
 - 3. Compute weighted shortest path between all points.
 - Dijkstra or other shortest path algorithm.
 - 4. Run MDS using these distances.

Does t-SNE always outperform PCA?

• Consider 3D data living on a 2D hyper-plane:

- PCA can perfectly capture the low-dimensional structure.
- T-SNE can capture the local structure, but can "twist" the plane.
 It doesn't try to get long distances correct.

Graph Drawing

- A closely-related topic to MDS is graph drawing:
 - Given a graph, how should we display it?
 - Lots of interesting methods: <u>https://en.wikipedia.org/wiki/Graph_drawing</u>

Bonus Slide: Multivariate Chain Rule

• Recall the univariate chain rule:

• The multivariate chain rule:

$$\frac{d}{dw} \left[f(q(w)) \right] = f'(q(w)) g'(w)$$

$$\frac{\nabla \left[f(q(w)) \right]}{\sqrt{\left[f(q(w)) \right]}} = f'(q(w)) \nabla g(w)$$

$$\frac{\sqrt{\left[f(q(w)) \right]}}{\sqrt{\left[x \right]}} = \frac{1}{\sqrt{\left[x \right]}} \frac{\sqrt{\left[x \right]}}{\sqrt{\left[x \right]}}$$

• Example:

$$\nabla \left(\frac{1}{2} (w^{T} \chi_{i} - y_{i})^{1} \right)$$

$$= \nabla \left[f(q(w)) \right]$$
with $q(w) = w^{T} \chi_{i} - y_{i}$
and $f(r_{i}) = \frac{1}{2} r_{i}^{2}$

$$\int \left[f'(r_{i}) = r_{i} \right]$$

$$= \left(w^{T} \chi_{i} - y_{i} \right) \chi_{i}$$

Bonus Slide: Multivariate Chain Rule for MDS

• General MDS formulation:

$$\begin{array}{ll} \text{Argmin} & \sum_{i=1}^{n} \sum_{j=i+l}^{n} g(d_1(x_i, x_j), d_2(z_i, z_j)) \\ \text{ZER}^{n \times k} & \sum_{i=1}^{n} j = i+l \end{array}$$

• Using multivariate chain rule we have:

$$\nabla_{z_{i}} g(d_{i}(x_{i}, x_{j}), d_{2}(z_{i}, z_{j})) = g'(d_{i}(x_{i}, x_{j}), d_{2}(z_{i}, z_{j})) \nabla_{z_{i}} d_{2}(z_{i}, z_{j}))$$

• Example: If $d_{i}(x_{i}, x_{j}) = ||x_{i} - x_{j}||$ and $l_{2}(z_{i}, z_{j}) = ||z_{i} - z_{j}||$ and $g(d_{i}, d_{2}) = \frac{1}{2}(d_{i} - d_{2})^{2}$ $\nabla_{z_{i}} g(d_{i}(x_{i}, x_{j}), d_{2}(z_{i}, z_{j})) = -(d_{i}(x_{i}, x_{j}) - d_{2}(z_{i}, z_{j})) = -(\frac{(z_{i} - z_{j})}{2||z_{i} - z_{j}||} = \nabla_{z_{i}} d_{2}(z_{i}, z_{j})$ $\int Assuming z_{i} \neq z_{j}$ (move disforces closer) (how distance changes in z = space)

Multiple Word Prototypes

- What about homonyms and polysemy?
 - The word vectors would need to account for all meanings.
- More recent approaches:
 - Try to cluster the different contexts where words appear.
 - Use different vectors for different contexts.

Multiple Word Prototypes

