CPSC 340:
Machine Learning and Data Mining

Multi-Dimensional Scaling



Last Time: Variants of PCA

Solve the PCA objective function by alternative minimization and
gradient descent.

Variants of PCA: robust PCA, binary PCA, regularized PCA.
Non-negative matrix factorization, topic modeling.

We discussed recommender systems:
— Predicting what ratings users have for different products.

— content-based filtering (supervised): Extract features of users and
products, and use these to predict rating.

— collaborative filtering (unsupervised): Methods that only looks at ratings,
not features of products.



Visualization High-Dimensional Data

* PCA for visualizing high-dimensional data:

— Use PCA ‘W’ matrix to linearly transform data to get the z; values.
— And then we plot the z, values as locations in a scatterplot.
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Visualization High-Dimensional Data

* PCA for visualizing high-dimensional data:

— Use PCA ‘W’ matrix to linearly transform data to get the z; values.
— And then we plot the z, values as locations in a scatterplot.

 An common alternative is multi-dimensional scaling (MDS):

— Directly optimize the pixel locations of the z, values.
e “Gradient descent on the points in a scatterplot”.

— Needs a “cost” function saying how “good” the z, Ioca/tions are.
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z; values.
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

1(z2)= Zi (2 - “25ll = lly, - x)U)

= \J..+I

— Non-parametric dimensionality reduction and visualization:

* No ‘W’: just trying to make z; preserve high-dimensional distances between x.
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

1(z2)= Zi (2 - “2ll = Iy, - xJN)

= \J..+I

— Non-parametric dimensionality reduction and visualization:

* No ‘W’: just trying to make z; preserve high-dimensional distances between x.
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z; values.
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— Non-parametric dimensionality reduction and visualization:

* No ‘W’: just trying to make z; preserve high-dimensional distances between x.
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z; values.
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— Non-parametric dimensionality reduction and visualization:

* No ‘W’: just trying to make z; preserve high-dimensional distances between x.
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z; values.
n n 2
'F(Z): zZ 2 (”Z,‘ ”ZJ'“ - ”Yi - X)'“)
=it
* Cannot use SVD to compute solution:
— Instead, do gradient descent on the z, values.

— You “learn” a scatterplot that tries to visualize high-dimensional data.

— Not convex and sensitive to initialization.
* And solution is not unique due to various factors like translation and rotation.



Different MDS Cost Functions
* The default MDS objective function using the Euclidean distance:
{(z)= Z j (N2 - -2l = lly; = xJH)

=t =i

* We could consider different distances/similarities:

P(2)=493 dlkhlaz) = dilxx)

l.—|J“| |

— Where the functions are not necessarily the same:
* d, is the high-dimensional distance we want to match.
* d, is the low-dimensional distance we can control.

* d; controls how we compare high-/low-dimensional distances.



PCA is a Special MDS

* Letd; and d, be the dot product, and d; the square distance

Note, K = XX7 is called the Gram matrix, which measures the dot-product
between data points (centered)

We may be interested in minimizing the distort;ons in distances after projecting x
T T, \2 _ T
to z, e.g., Zi,j(xz- X; — Z; 2;)° = ||K — 77 ”F

Using SVD, we can factorize, XXT = UAY/2VTVAL/2UT = UAV2A1/2UT
The best rank-K approximation to K is UAUT = UA1/2A1/2QyT

Thus, we can get Z = UAY2 (PCA latent representation and the classic
multi-dimensional scaling)
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Next Topic: t-SNE



Data on Manifolds

e Consider data that lives on a low-dimensional “manifold”.

— Where Euclidean distances make sense “locally”.
* But Euclidean distances may not make sense “globally”.

— Wikipedia example: Surface of the Earth is “locally” flat.
* Euclidean distance accurately measures distance “along the surface” locally.
* For far points Euclidean distance is a poor measure of distance “along the surface”.
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e Consider data that lives on a low-dimensiona

Data on Manifolds

— Where Euclidean distances make sense “locally”.
e But Euclidean distances may not make sense “globally”.

 Example is the ‘Swiss roll’:
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Example: Manifolds in Image Space

* Slowly-varying image transformations exist on a manifold:
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* “Neighbouring” images are close in Euclidean distance.
— But distances between very-different images are not reliable.



Learning Manifolds

* With usual distances, PCA/MDS do not discover non-linear manifolds.
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Learning Manifolds

* With usual distances, PCA/MDS do not discover non-linear manifolds.

0!‘\9;«\0, Ja/} PcA

* We could use change of basis or kernels: but still need to pick basis.



Sammon’s Mapping

* Challenge for most MDS models: they focus on large distances.
— Leads to “crowding” effect like with PCA.
e Early attempt to address this is Sammon’s mapping:
— Weighted MDS so Iarge/small distances are more comparable.
£(2)= z 2 ( 422 )) J (1 x)))

— Denominator reduces focus on large distances.




ISOMAP

* |ISOMAP is latent-factor model for visualizing data on manifolds:
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PCA

Sammon’s Map vs. ISOMAP vs. PCA (MNIST)
TSOMAP
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Sammon’s Map vs. ISOMAP vs. t-SNE (MNIST)

OO ~NO O WN-=O

* A ‘modern’ way to visualize manifolds and clusters is t-SNE.



Sammon’s Map vs. ISOMAP vs. t-SNE (MNIST)
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1 Sammon’s Map vs. ISOMAP vs. t-SNE (MNIST)
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Sammon’s Map vs. ISOMAP vs. t-SNE (MNIST)
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Sammon’s Map vs. ISOMAP vs. t-SNE (MNIST)
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t-Distributed Stochastic Neighbour Embedding

* One key idea in t-SNE:

— Focus on distance to “neighbours” (allow large variance in other distances)




t-Distributed Stochastic Neighbour Embedding

Visualizing Data using t-SNE

Laurens van der Maaten LVDMAATEN @GMAIL.COM
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Tilburg University

P.O. Box 90153, 5000 LE Tilburg, The Netherlands

Geoffrey Hinton HINTON@CS.TORONTO.EDU
Department of Computer Science

University of Toronto

6 King’s College Road, M5S 3G4 Toronto, ON, Canada

Editor: Yoshua Bengio

I I |8386

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Cited by 35319

Interactive demo: https://distill.pub/2016/misread-tsne



https://distill.pub/2016/misread-tsne

The Loss Function

* The Kullback-Leibler divergence between the affinity
(similarity) matrix P from the high-dimensional data and the
affinity matrix from the low-dimensional data Q

KL (P Q)= ) pi log—
7]

* The loss is optimized via gradient descent.

 Keep nearby data points in the high-dimensional space nearby in
the low-dimensional space, while push all data points in the low-
dimensional space apart from each other.



The High-dimensional Affinity Matrix

* The high-dimensional affinity matrix

2
B exp(—‘ X, — XJ'H /20%)
= 3
D kti €XD(— % — x|” /207)

Pji

e Typically symmetrize and normalize to be a probability mass
function pits + Dil;
Pii = 79N
* The data point-dependent parameter o is adaptively calculated to
achieve the desired perplexity (30 by default)

2—23- Pj|i loga pj|;




The Low-dimensional Affinity Matrix

* The low-dimensional affinity matrix g;;:

(14| — ]| /v)~" %
_ 2 _v+1
D k(L 1z — z|” /)

* Here we typically use the Student’s t distribution with v=1 (the
Cauchy distribution to measure the similarity between points).



Other Details

T-SNE is sensitive to initialization, typically we initial Z by PCA.

To compute the high-dimensional affinity matrix can be slow
O(n?d), we use approximate k-NN search to only compute the
affinities between a point and its k-NNs (k = 3 * perplexity).

We set both p.;and g, = 0 (only pairwise similarities are of interest).

Optimization trick (early exaggeration — multiply the attractive
force by 12 for the first 250 iterations).

Speedup calculating the repulsive force (the FFT-SNE algorithm).

A more recent nonlinear dimension reduction tool: UMAP
(Uniform manifold approximation and projection for dimension
reduction, published in 2018, >10k citations).



https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426

t-SNE on Product Features




t-SNE on Leukemia Heterogeneity

Not manually gated @ CD4Tcells @ CD8Tcells
® CD20+Bcells CD20-Bcells @ CD11b- Monocytes
@® CD11b+ Monocytes @ NK cells

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076922/



UMAP on Mouse Brain Data

* 4 million single-cell transcriptomes from adult mouse brain labeled
by source brain region.

https://alleninstitute.org/resource/what-is-a-umap/



ArXiv Machine Learning Landscape

MEDICAL IMAGE
ANALYSIS

- “NATURAL LANGUAGE

GRAPH NEURAL # PROCESSING
NETWORKS AND;.": £
RELATED AOMANCED OPICS

MACHINE LEARNING:
IN-PHYSICS AND. 12
FLUID DYNAMICS -, © 7.

* REINFORCEMENT
LEARNING &)
RELATED ToOPICS




Next Topic: Word2Vec



Latent-Factor Representation of Words

For natural language, we often represent words by an index.
— E.g., “cat” is word 124056 among a “bag of words”.

But this may be inefficient:
— Should “cat” and “kitten” features be related is some way?

We want a latent-factor representation of individual words:
— Closeness in latent space should indicate similarity.
— Distances could represent meaning?

Recent alternative to PCA is word2vec...



Using Context

* Consider these phrases:

— “the cat purred”
— “the kitten purred”

— “black cat ran”
— “black kitten ran”

 Words that occur in the same context likely have similar meanings.

* Word2vec uses this insight to desigh an MDS distance function.



Word2Vec (Continuous Bag of Words)

A common word2vec approaches (called continuous bag of words):

— Each word ‘i’ is represented by a vector of real numbers z..

— Training data: sentence fragments with “hidden” middle word:

“We introduce basic prineiples and techniques in”
* “the fields of data mining and machine”

* “tools behind the emerging field of data”

* “techniques are now running behind the scenes”

* “discover patterns and make predictions in various”
* “the core data mining and machine learning”

* “with motivating applications frem a variety of”

— Train so that z, of “hidden” words are similar to z; of surrounding words.



Word2Vec (Continuous Bag of Words)

e Continuous bag of words model probability of middle word ‘i’ as:

‘W ¥€ XF[Z,‘TZJ'>
) ! Hwords .
€ surriviin
‘) \'Corb 7 {é exf(zc ZJ')
 We use gradient descent on negative logarithm of these probabilities:
— Makes z;'z; big for words appearing in same context (making z; close to z)).

— Makes z;'z; small for words not appearing together (makes z; and z; far).

* Once trained, you use these z, as features for language tasks.

— Tends to work much better than bag of words.
— Allows you to get useful features of words from unlabeled text data.



Word2Vec Example
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* Distances between vectors might represent semantics.



Word2Vec

Subtracting word vectors to find related vectors.

Table 8: Examples of the word pair relationships, using the best word vectors from Table |4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship

Example 1

Example 2

Example 3

France - Paris
big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer
Japan - sushi

Italy: Rome
small: larger
Baltimore: Maryland
Messi: midficlder
Berlusconi: Italy
zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo
Germany: bratwurst

Japan: Tokyo
cold: colder
Dallas: Texas
Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux
IBM: McNealy
France: tapas

Florida: Tallahassee
quick: quicker
Kona: Hawaii
Picasso: painter
Koizumi: Japan

uranium: plutonium
Obama: Barack
Apple: iPhone

Apple: Jobs
USA: pizza

Table[]

relationship is defined by subtrz:

for example,

Word vectors for 157 languages here.

shows words that follow vanou% relationships. We follow the approach described above: the
word vectors, and the result is added to another word. Thus
ris - France + Italy = Rome.) As it can be seen, accuracy is quite good, although


https://fasttext.cc/docs/en/crawl-vectors.html

Summary

Multi-dimensional scaling is a non-parametric latent-factor model.
Different MDS distances/losses/weights usually gives better results.
Manifold: space where local Euclidean distance is accurate.

— Structured data like images often form manifolds in space.
t-SNE is an MDS method focusing on matching small distances.
Word2vec:

— Latent-factor (continuous) representation of words.
— Based on predicting word from its context (or context from word).

Next time: Neural Networks.



Word2Vec (Skip-Gram)

A common word2vec approaches (skip gram):

— Each word ‘i’ is represented by a vector of real numbers z..

— Training data: sentence fragments with “hidden” surrounding word:
» “Weintrodueebasie principles and-techniguesin”
» “thefields-of data miningand-machine”
» “toolsbehindthe emerging field-of data”
* “technigques-are now running behind the scenes”
» “discoverpatternsand make predictionsin-varieds”
* “the core data mining and machine learning”
* “with-motivating-applications from a~variety-of”
— Train so that z, of “hidden” words are similar to z; of surrounding words.

e Uses same probability as continuous bag of words.
— But denominator sums over all possible surrounding words (often just sample terms for speed).



Stochastic Gradient for SVDfeature

e Common approach to fitting SVDfeature is stochastic gradient.

* Previously you saw stochastic gradient for supervised learning:
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e Stochastic gradient for SVDfeature (formulas as bonus):
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SVDfeature with SGD: the gory details
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Tensor Factorization

* Tensors are higher-order generalizations of matrices:

Kq

>

Scaley o= ] Vech, O‘:\}Aﬂ /\A"d’iy A:£
d

e Generalization of matrix factorization is tensor factorization:

k
VaVd
YUMN é V\/J¢zicvmc,
c=i
e Useful if there are other relevant variables:

* Instead of ratings based on {user,movie}, ratings based {user,movie,group}.

!

—

N

» Useful if you have groups of users, or if ratings change over time.




Field-Aware Matrix Factorization

* Field-aware factorization machines (FFMs):

— Matrix factorization with multiple z; or w, for each example or part.
— You choose which z; or w, to use based on the value of feature.

 Example from “click through rate” prediction:

— E.g., predict whether “male” clicks on “nike” advertising on “espn” page.
— A previous matrix factorization method for the 3 factors used:

+
M/QS'M‘ WI‘\M’(’ k/(",n Whm/c f Wh;,f( WMq/lo
: ¢ £l G\ A
— FFMs could use: m’;“, Ware ¥ W Wy T it Wede

* wespnA is the factor we use when multiplying by a an advertiser’s latent factor.
* wespnG is the factor we use when multiplying by a group’s latent factor.

e This approach has won some Kaggle competitions (link),
and has shown to work well in production systems too (link).



https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf
https://arxiv.org/pdf/1701.04099.pdf

Warm-Starting

We've used data {X,y} to fit a model.
We now have new training data and want to fit new and old data.

Do we need to re-fit from scratch?

This is the warm starting problem.

— It’s easier to warm start some models than others.



Easy Case: K-Nearest Neighbours and Counting

e K-nearest neighbours:
— KNN just stores the training data, so just store the new data.

* Counting-based models:
— Models that base predictions on frequencies of events.
— E.g., naive Bayes.

W \4'/'0'( viceln any | ew and ol Aa
— Just update the counts: P( vcodin' | Sporm ) — (ow of duicelinspans in new and oll Lk

Counl of “pam" in new and oll dbfs

— Decision trees with fixed rules: just update counts at the leaves.



Medium Case: L2-Regularized Least Squares

e |L2-regularized least squares is obtained from linear algebra:
w= (X + A7 (X))

— Cost is O(nd? + d3) for ‘n’ training examples and ‘d’ features.

* Given one new point, we need to compute:
— X'y with one row added, which costs O(d).
— Old X™X plus x.x., which costs O(d?).
— Solution of linear system, which costs O(d3).
— So cost of adding ‘t’ new data point is O(td?3).

* With “matrix factorization updates”, can reduce this to O(td?).
— Cheaper than computing from scratch, particularly for large d.



Medium Case: Logistic Regression

* We fit logistic regression by gradient descent on a convex function.

* With new data, convex function f(w) changes to new function g(w).

n¥ |
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* |f we don’t have much more data, ‘t" and ‘g’ will be “close”.

— Start gradient descent on ‘g” with minimizer of ‘.
— You can show that it requires fewer iterations.
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Hard Cases: Non-Convex/Greedy Models

For decision trees:

— “Warm start”: continue splitting nodes that haven’t already been split.
— “Cold start”: re-fit everything.

Unlike previous cases, this won’t in general give same result as re-fitting:
— New data points might lead to different splits higher up in the tree.

Intermediate: usually do warm start but occasionally do a cold start.

Similar heuristics/conclusions for other non-convex/greedy models:
— K-means clustering.
— Matrix factorization (though you can continue PCA algorithms).



Different MDS Cost Functions
* MDS default objective function with general distances/similarities:
INVIE Z’\ 5? d3(dalai)25) — dy(x,x;))

* A possibility is “classic” MDS with d,(x;,x;) = x;'x; and d,(z;,z) = 7'z,
— We obtain PCA in this special case (centered x;, d; as the squared L2-norm).
— Not a great choice because it’s a linear model.



Different MDS Cost Functions

* MDS default objective function with general distances/similarities:

n n
P(2)= 53 d3ldla,z) = dilxx))
’,:Ij’;l"l
* Another possibility: dy(x;,x;) = | |x;— x| |; and dy(z,z) = | |z;— 7| |.
— The z, approximate the high-dimensional L;-norm distances.
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Sammon’s Mapping

* Challenge for most MDS models: they focus on large distances.
— Leads to “crowding” effect like with PCA.
e Early attempt to address this is Sammon’s mapping:
— Weighted MDS so Iarge/small distances are more comparable.
£(2)= z 2 ( 422 )) J (1 x)))

— Denominator reduces focus on large distances.
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Sammon’s Mapping

* Challenge for most MDS models: they focus on large distances.
— Leads to “crowding” effect like with PCA.

e Early attempt to address this is Sammon’s mapping:
— Weighted MDS so large/small distances are more comparable.
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Geodesic Distance on Manifolds

* Consider data that lives on a low-dimensional “manifold”.

— With usual distances, PCA/MDS will not discover non-linear manifolds.

* We need geodesic distance: the distance through the manifold.
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ISOMAP

* |ISOMAP can “unwrap” the roll:
— Shortest paths are approximations to geodesic distances.

* Sensitive to having the right graph:
— Points off of manifold and gaps in manifold cause problems.




Constructing Neighbour Graphs

* Sometimes you can define the graph/distance without features:

— Facebook friend graph.
— Connect YouTube videos if one video tends to follow another.

* But we can also convert from features x; to a “neighbour” graph:

— Approach 1 (“epsilon graph”): connect x; to all x; within some threshold «.
* Like we did with density-based clustering.

— Approach 2 (“KNN graph”): connect x; to x; if:
* X;is a KNN of x; OR x; is a KNN of x.

— Approach 2 (“mutual KNN graph”): connect x; to x; if:
* X;is a KNN of x; AND x; is a KNN of x;.



Converting from Features to Graph

Data points
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ISOMAP

* |ISOMAP is latent-factor model for visualizing data on manifolds:

1. Find the neighbours of each point.
* Usually “k-nearest neighbours graph”, or “epsilon graph”.

2. Compute edge weights:

* Usually distance between neighbours.

3. Compute weighted shortest path between all points. | |
e Dijkstra or other shortest path algorithm.

4. Run MDS using these distances. l




Does t-SNE always outperform PCA?

* Consider 3D data living on a 2D hyper-plane:
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 PCA can perfectly capture the low-dimensional structure.
* T-SNE can capture the local structure, but can “twist” the plane.
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Graph Drawing

* A closely-related topic to MDS is graph drawing:

— Given a graph, how should we display it?
— Lots of interesting methods: https://en.wikipedia.org/wiki/Graph drawing



https://en.wikipedia.org/wiki/Graph_drawing

* Recall the univariate chain rule:

Bonus Slide: Multivariate Chain Rule
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* The multivariate chain rule: ( (W = £ (\.))V (.,
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Bonus Slide: Multivariate Chain Rule for MDS

e General MDS formulation:
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e Using multivariate chain rule we have:
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Multiple Word Prototypes

 What about homonyms and polysemy?

— The word vectors would need to account for all meanings.

* More recent approaches:

— Try to cluster the different contexts where words appear.
— Use different vectors for different contexts. /
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