
CPSC 340:
Machine Learning and Data Mining

Beyond PCA



Last Time: PCA Objective Function
• In PCA we minimize the squared error of the approximation:

– When k = 1, PCA has a scaling problem.
– When k > 1, PCA has a scaling, rotation, and label switching problem.
– Fix: The rows of W are orthonormal vectors, and fitted sequentially; We use SVD (or 

EVD) to find W and Z.  
• Eigenfaces: approximate images of faces with PCA basis

– Applications to face classification and face detection.



“Synthesis” View vs. “Analysis” View
• We said that PCA finds hyper-plane minimizing distance to data xi.
– This is the “synthesis” view of PCA (connects to k-means and least squares).

• “Analysis” view when we have orthogonality constraints: 
– PCA finds hyper-plane maximizing variance in zi space.
– You pick W to “explain as much variance in the data” as possible.



Next Topic: Alternatives to SVD for PCA



PCA Computation: other methods
• With linear regression, we had the normal equations
– But we also could do it with gradient descent, SGD, etc.

• With PCA we have the SVD
– But we can also do it with gradient descent, SGD, etc.

– These other methods typically don’t enforce the uniqueness “constraints”.
• Sensitive to initialization, don’t enforce normalization, orthogonality, ordered PCs.

– But you can do this in post-processing if you want.

– Why would we want this? We can use our tricks from Part 3 of the course:
• We can do things like “robust” PCA, “regularized” PCA, “sparse” PCA, “binary” PCA.
• We can fit huge datasets where SVD is too expensive.
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PCA Computation: Alternating Minimization
• With centered data, the PCA objective is:

• In k-means we tried to optimize this with alternating minimization:
– Fix “cluster assignments” Z and find the optimal “means” W.
– Fix “means” W and find the optimal “cluster assignments” Z.

• Converges to a local optimum.
– But may not find a global optimum (sensitive to initialization).



PCA Computation: Alternating Minimization
• With centered data, the PCA objective is:

• In PCA we can also use alternating minimization:
– Fix “part weights” Z and find the optimal “parts” W.
– Fix “parts” W and find the optimal “part weights” Z.

• Repeat until you converge to a local optimum.



PCA Computation: Alternating Minimization
• With centered data, the PCA objective is:

• Alternating minimization steps:
– If we fix Z, this is a quadratic function of W (least squares column-wise):

– If we fix W, this is a quadratic function of Z (transpose due to dimensions):



PCA Computation: Alternating Minimization
• With centered data, the PCA objective is:

• This objective is not jointly convex in W and Z.
– You will find different W and Z depending on the initialization.

• For example, if you initialize with all wc = 0, then they will stay at zero.

– But it’s possible to show that all “stable” local optima are global optima.
• You will converge to a global optimum in practice if you initialize randomly.

– Randomization means you don’t start on one of the unstable non-global critical points.

• E.g., sample each initial zij from a normal distribution.

http://www.offconvex.org/2018/11/07/optimization-beyond-landscape/



PCA Computation: Stochastic Gradient Descent
• For big X matrices, you can also use stochastic gradient descent:

• Other variables stay the same, cost per iteration is only O(k).



Next Topic: Variations on PCA



Beyond Squared Error
• Our objective for latent-factor models (LFM):

• As before, there are alternatives to squared error.

• If X has of +1 and -1 values, we could use the logistic loss:

– And predict xij with sign(oij), which would be a binary PCA model.



Beyond Squared Error
• Our objective for latent-factor models (LFM):

• As before, there are alternatives to squared error.

• If X has many outliers, we could use the absolute loss:

– Which will robust to outliers and is called robust PCA model.



Regularized Matrix Factorization
• Recently people have also considered L2-regularized PCA:

• Replaces normalization/orthogonality/sequential-fitting.
– Often gives lower reconstruction error on test data.
– But requires regularization parameters λ1 and λ2.

• Need to regularize W and Z because of scaling problem.
– If you only regularize ‘W’ it does not do anything.

• I could take unregularized solution, replace W by αW for a tiny α to
shrink ||W||F as much as I want, then multiply Z by (1/α) to get same solution.

– Similarly, if you only regularize ‘Z’ it does not do anything.



Sparse Matrix Factorization and NMF
• Alternately, many works consider L1-regularization:

– Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).
• Encourage values of ‘Z’ or ‘W’ to be exactly zero as we increase 𝜆! or 𝜆".

• A related older method is non-negative matrix factorization (NMF):
– Optimizes the PCA objective but forces ‘Z’ and ‘W’ to be non-negative.

• In some applications nonnegative quantities make more sense.

– The non-negative constraint also leads to sparsity (many values set to 0).
• But unlike L1-regularization, you cannot control the degree of sparsity.



VQ vs. PCA vs. NMF
• How should we represent faces?
– Vector quantization (k-means).

• Replace face by the average face in a cluster.
• ‘Grandmother cell’: one neuron = one face.
• Almost certainly not true: too few neurons.
• Can’t distinguish between people in the same cluster (only ‘k’ possible faces). 



VQ vs. PCA vs. NMF
• How should we represent faces?
– Vector quantization (k-means). 
– PCA (orthogonal basis).

• Global average plus linear combination of “eigenfaces”.
• “Distributed representation”.

– Coded by pattern of group of neurons: can represent infinite number of faces  by changing zi.

• But “eigenfaces” are not intuitive ingredients for faces.
– PCA tends to use positive/negative cancelling bases.



VQ vs. PCA vs. NMF
• How should we represent faces?
– Vector quantization (k-means). 
– PCA (orthogonal basis).
– NMF (non-negative matrix factorization):

• Instead of orthogonality/ordering in W, require W and Z to be non-negativity.
• Example of “sparse coding”:

– The zi are sparse so each face is coded by a small number of neurons.
– The wc are sparse so neurons tend to be “parts” of the object.



Representing Faces
• Why sparse coding?
– “Parts” are intuitive, and brains seem to use sparse representation.
– Energy efficiency if using sparse code.
– Increase number of concepts you can memorize?

• Some evidence in fruit fly olfactory system.

http://www.columbia.edu/~jwp2128/Teaching/W4721/papers/nmf_nature.pdf



Warm-up to NMF: Non-Negative Least Squares
• Consider our usual least squares problem:

• But assume yi and elements of xi are non-negative:
– Could be sizes (‘height’, ‘milk’, ‘km’) or counts (‘vicodin’, ‘likes’, ‘retweets’).

• Assume we want elements of ‘w’ to be non-negative, too:
– No physical interpretation to negative weights.
– If xij is amount of product you produce, what does wj < 0 mean?

• Non-negativity leads to sparsity...



Sparsity and Non-Negative Least Squares
• Consider 1D non-negative least squares objective:

• Plotting the (constrained) objective function:

• In this case, non-negative solution is least squares solution.



Sparsity and Non-Negative Least Squares
• Consider 1D non-negative least squares objective:

• Plotting the (constrained) objective function:

• In this case, non-negative solution is w = 0.



Sparsity and Non-Negativity
• Similar to L1-regularization, non-negativity leads to sparsity.
– Also regularizes: wj are smaller since can’t “cancel” negative values.
– Sparsity leads to cheaper predictions and often to more interpretability.

• Non-negative weights are often also more interpretable.

• How can we minimize f(w) with non-negative constraints?
– Naive approach: solve least squares problem, set negative wj to 0.

– This is correct when d = 1.
– Can be worse than setting w = 0 when d ≥ 2.  



Sparsity and Non-Negativity
• Similar to L1-regularization, non-negativity leads to sparsity.
– Also regularizes: wj are smaller since can’t “cancel” out negative values.

• How can we minimize f(w) with non-negative constraints?
– A correct approach is projected gradient algorithm:

• Run a gradient descent iteration:

• After each step, set negative values to 0.

• Repeat.



Sparsity and Non-Negativity
• Projected gradient algorithm:

– Similar properties to gradient descent:
• Guaranteed decrease of ‘f’ if αt is small enough.
• Reaches local minimum under weak assumptions (global minimum for convex ‘f’).

– Least squares objective is still convex when restricted to non-negative variables.

– A generalization is “proximal-gradient”:
• Instead of constraints, allows non-smooth terms (“findMinL1”).



Projected-Gradient for NMF
• Back to the non-negative matrix factorization (NMF) objective:

– Different ways to use projected gradient:
• Alternate between projected gradient steps on ‘W’ and on ‘Z’.
• Or run projected gradient on both at once.
• Or sample a random ‘i’ and ‘j’ and do stochastic projected gradient.

– Non-convex and (unlike PCA) is sensitive to initialization.
• Hard to find the global optimum.
• Typically use random initialization.
• Also, we usually don’t center the data with NMF.



Application: Cancer “Signatures”
• What are common sets of mutations in different cancers?

https://pubmed.ncbi.nlm.nih.gov/22608084/



Sparse Eigenfaces

http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf



Beyond Matrix Factorization: Topic Models
• For modeling categorical data, “topic models” are replacing NMF.
– A “fully-Bayesian” model where sparsity arises naturally.
– Most popular example is called “latent Dirichlet allocation” (440 and grad. 

courses).

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf



Next Topic: Recommender Systems



Recommender System Motivation: Netflix Prize
• Netflix Prize:
– 100M ratings from 0.5M users on 18k movies.
– Grand prize was $1M for first team to reduce squared error by 10%.
– Started on October 2nd, 2006.
– Netflix’s system was first beat October 8th.
– 1% error reduction achieved on October 15th.
– Steady improvement after that.

• ML methods soon dominated.



Motivation: Other Recommender Systems
• Recommender systems are now everywhere:
– Music, news, books, jokes, experts, restaurants, friends, dates, etc.

• Main types of approaches:
1. Content-based filtering.

• Supervised learning:
– Extract features xi of users and items, building model to predict rating yi given xi.
– Apply model to prediction for new users/items.

• Example: G-mail’s “important messages” (personalization with “local” features).

2. Collaborative filtering.
• “Unsupervised” learning (have label matrix ‘Y’ but no features):

– We only have labels yij (rating of user ‘i’ for movie ‘j’).

• Example: Amazon recommendation algorithm.



Lessons Learned from Netflix Prize
• Netflix prize awarded in 2009:
– Ensemble method that averaged 107 models.
– Increasing diversity of models more important than improving models.

• Winning entry (and most entries) used collaborative filtering:
– Methods that only looks at ratings, not features of movies/users.

• A simple collaborative filtering method that does really well (7%):
– “Regularized matrix factorization”. Now adopted by many companies.

http://bits.blogs.nytimes.com/2009/09/21/netflix-awards-1-million-prize-and-starts-a-new-contest/?_r=0



Collaborative Filtering Problem
• Collaborative filtering is ‘filling in’ the user-item matrix:

• We have some ratings available with values {1,2,3,4,5}.
• We want to predict ratings “?” by looking at available ratings.



Collaborative Filtering Problem
• Collaborative filtering is ‘filling in’ the user-item matrix:

• What rating would “Ryan Reynolds” give to “Green Lantern”?
– Why is this not completely crazy? We may have similar users and movies.



Matrix Factorization for Collaborative Filtering
• The standard latent-factor model for entries in matrix ‘Y’:

• User ‘i’ has latent features zi.
• Movie ‘j’ has latent features wj.
• Our loss functions sums over available ratings ‘R’:

• And we add L2-regularization to both types of features.
– Basically, this is regularized PCA on the available entries of Y.
– Typically fit with SGD.

• This simple method gives you a 7% improvement on the Netflix problem.



Adding Global/User/Movie Biases
• Our standard latent-factor model for entries in matrix ‘Y’:

• Sometimes we don’t assume the yij have a mean of zero:
– We could add bias β reflecting average overall rating:

– We could also add a user-specific bias βi and item-specific bias βj.

• Some users rate things higher on average, and movies are rated better on average.
• These might also be regularized.



Summary
• Alternating minimization and stochastic gradient descent:
– Iterative algorithms for minimizing the PCA objective.

• Many of our regression tricks can be used with LFMs:
– Robust PCA uses absolute error to be robust to outliers.
– Regularized PCA can improve generalization or give sparse factors.

• Non-negative matrix factorization (NMF) leads to sparse solutions: 
– Non-negative constraints on both Z and W, project gradient. 

• Recommender systems try to recommend products.
– Collaborative filtering (by matrix factorization) tries to fill in missing values in a 

matrix.

• Next time: should we make a scatterplot with gradient descent?



Proof: “Synthesis” View = “Analysis” View (WWT = I)

• The variance of the zij (maximized in “analysis” view):

• The distance to the hyper-plane (minimized in “synthesis” view):



Background Subtraction with Robust PCA
• Robust PCA methods use the absolute error:

• Will be robust to outliers in the matrix ‘X’.
• Encourages “residuals” rij to be exactly zero.
– Non-zero rij are where the “outliers” are.

http://statweb.stanford.edu/~candes/papers/RobustPCA.pdf



Digression: “Whitening”
• With image data, features will be very redundant.
– Neighbouring pixels tend to have similar values.

• A standard transformation in these settings is “whitening”:
– Rotate the data so features are uncorrelated.
– Re-scale the rotated features so they have a variance of 1.

• Using SVD approach to PCA, we can do this with:
– Get ‘W’ from SVD (usually with k=d).
– Z = XWT (rotate to give uncorrelated features).
– Divide columns of ‘Z’ by corresponding singular values (unit variance).

• Details/discussion here.

http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/


Kernel PCA
• From the “analysis” view (with orthogonal PCs) PCA maximizes: 

• It can be shown that the solution has the form (see here):

• Re-parameterizing in terms of ‘U’ gives a kernelized PCA:

• It’s hard to initially center data in ‘Z’ space, 
but you can form the centered kernel matrix (see here).

https://www.ics.uci.edu/~welling/classnotes/papers_class/Kernel-PCA.pdf
https://www.ics.uci.edu/~welling/classnotes/papers_class/Kernel-PCA.pdf


Application: Sports Analytics
• NBA shot charts:

• NMF (using “KL divergence” loss with k=10 and smoothed data).
– Negative

values would
not make 
sense here.

http://jmlr.org/proceedings/papers/v32/miller14.pdf



Application: Cancer “Signatures”
• What are common sets of mutations in different cancers?
– May lead to new treatment options.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3588146/



Recent Work: Structured Sparsity
• “Structured sparsity” considers dependencies in sparsity patterns.
– Can enforce that “parts” are convex regions.

http://jmlr.org/proceedings/papers/v9/jenatton10a/jenatton10a.pdf



Sparse Matrix Factorization
• Instead of non-negativity, we could use L1-regularization:

– Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).

• Disadvantage of using L1-regularization over non-negativity:
– Sparsity controlled by λ1 and λ2 so you need to set these.

• Advantage of using L1-regularization:
– Sparsity controlled by λ1 and λ2, so you can control amount of sparsity.
– Negative coefficients often do make sense.



Sparse Matrix Factorization
• Instead of non-negativity, we could use L1-regularization:

– Called sparse coding (L1 on ‘Z’) or sparse dictionary learning (L1 on ‘W’).

• Many variations exist:
– Mixing L2-regularization and L1-regularization.

• Or normalizing ‘W’ (in L2-norm or L1-norm) and regularizing ‘Z’.

– K-SVD constrains each zi to have at most ‘k’ non-zeroes:
• K-means is special case where k = 1.
• PCA is special case where k = d.



Canonical Correlation Analysis (CCA)
• Suppose we have two matrices, ‘X’ and ‘Y’.
• Want to find matrices WX and WY that maximize correlation.
– “What are the latent factors in common between these datasets?”

• Define the correlation matrices:

• Canonical correlation analysis (CCA) maximizes

– Subject to WX and WY having orthogonal rows.

• Computationally, equivalent to PCA with a different matrix.
– Using the “analysis” view that PCA maximizes Tr(WTWXTX).



Probabilistic PCA
• With zero-mean (“centered”) data, in PCA we assume that

• In probabilistic PCA we assume that

• Integrating over ‘Z’ the marginal likelihood given ‘W’ is Gaussian,

• Regular PCA is obtained as the limit of σ2 going to 0.



Generalizations of Probabilistic PCA
• Probabilistic PCA model:

• Why do we need a probabilistic interpretation?

• Shows that PCA fits a Gaussian with restricted covariance.
– Hope is that WTW + σ2I is a good approximation of XTX.

• Gives precise connection between PCA and factor analysis.



Factor Analysis
• Factor analysis is a method for discovering latent factors.
• Historical applications are measures of intelligence and personality.

• A standard tool and widely-used across science and engineering.
https://new.edu/resources/big-5-personality-traits



PCA vs. Factor Analysis
• PCA and FA both write the matrix ‘X’ as

• PCA and FA are both based on a Gaussian assumption.

• Are PCA and FA the same?
– Both are more than 100 years old.
– People are still arguing about whether they are the same:

• Doesn’t help that some packages run PCA when you call their FA method.





PCA vs. Factor Analysis
• In probabilistic PCA we assume:

• In FA we assume for a diagonal matrix D that:

• The posterior in this case is:

• The difference is you have a noise variance for each dimension.
– FA has extra degrees of freedom.



PCA vs. Factor Analysis
• In practice there often isn’t a huge difference:

http://stats.stackexchange.com/questions/1576/what-are-the-differences-between-factor-analysis-and-principal-component-analysi



Factor Analysis Discussion
• Differences with PCA:
– Unlike PCA, FA is not affected by scaling individual features.
– But unlike PCA, it’s affected by rotation of the data.
– No nice “SVD” approach for FA, you can get different local optima.

• Similar to PCA,  FA is invariant to rotation of ‘W’.
– So as with PCA you can’t interpret multiple factors as being unique.



Motivation for ICA
• Factor analysis has found an enormous number of applications.
– People really want to find the “hidden factors” that make up their data.

• But PCA and FA can’t identify the factors.



Motivation for ICA
• Factor analysis has found an enormous number of applications.
– People really want to find the “hidden factors” that make up their data.

• But PCA and FA can’t identify the factors.
– We can rotate W and obtain the same model.

• Independent component analysis (ICA) is a more recent approach.
– Around 30 years old instead of > 100.
– Under certain assumptions it can identify factors.

• The canonical application of ICA is blind source separation.



Blind Source Separation
• Input to blind source separation:
– Multiple microphones recording multiple sources.

• Each microphone gets different mixture of the sources.
– Goal is reconstruct sources (factors) from the measurements.

http://music.eecs.northwestern.edu/research.php



Independent Component Analysis Applications
• ICA is replacing PCA and FA in many applications:

• Recent work shows that ICA can often resolve direction of causality.
https://en.wikipedia.org/wiki/Independent_component_analysis#Applications



Limitations of Matrix Factorization
• ICA is a matrix factorization method like PCA/FA,

• Let’s assume that X = ZW for a “true” W with k = d.
– Different from PCA where we assume k ≤ d.

• There are only 3 issues stopping us from finding “true” W.



3 Sources of Matrix Factorization Non-Uniquness
• Label switching: get same model if we permute rows of W.
– We can exchange row 1 and 2 of W (and same columns of Z).
– Not a problem because we don’t care about order of factors.

• Scaling: get same model if you scale a row.
– If we mutiply row 1 of W by α, could multiply column 1 of Z by 1/α.
– Can’t identify sign/scale, but might hope to identify direction.

• Rotation: get same model if we rotate W.
– Rotations correspond to orthogonal matrices Q, such matrices have QTQ = I.
– If we rotate W with Q, then we have (QW)TQW = WTQTQW = WTW.

• If we could address rotation, we could identify the “true” directions.



A Unique Gaussian Property
• Consider an independent prior on each latent features zc.
– E.g., in PPCA and FA we use N(0,1) for each zc.

• If prior p(z) is independent and rotation-invariant (p(Qz) = p(z)),
then it must be Gaussian (only Gaussians have this property).

• The (non-intuitive) magic behind ICA:
– If the priors are all non-Gaussian, it isn’t rotationally symmetric.
– In this case, we can identify factors W (up to permutations and scalings).



PCA vs. ICA

http://www.inf.ed.ac.uk/teaching/courses/pmr/lectures/ica.pdf



Independent Component Analysis
• In ICA we approximate X with ZW, 

assuming p(zic) are non-Gaussian.

• Usually we “center” and “whiten” the data before applying ICA.

• There are several penalties that encourage non-Gaussianity:
– Penalize low kurtosis, since kurtosis is minimized by Gaussians.
– Penalize high entropy, since entropy is maximized by Gaussians.

• The fastICA is a popular method maximizing kurtosis.



ICA on Retail Purchase Data
• Cash flow from 5 stores over 3 years:

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf



ICA on Retail Purchase Data
• Factors found using ICA:

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf



Motivation for Topic Models
• Want a model of the “factors” making up documents.
– Instead of latent-factor models, they’re called topic models.
– The canonical topic model is latent Dirichlet allocation (LDA).

– “Topics” could be useful for things like searching for relevant documents.

http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation/



Term Frequency – Inverse Document Frequency

• In information retrieval, classic word importance measure is TF-IDF.

• First part is the term frequency tf(t,d) of term ‘t’ for document ‘d’.
– Number of times “word” ‘t’ occurs in document ‘d’, divided by total words.
– E.g., 7% of words in document ‘d’ are “the” and 2% of the words are “Lebron”.

• Second part is document frequency df(t,D).
– Compute number of documents that have ‘t’ at least once.
– E.g., 100% of documents contain “the” and 0.01% have “LeBron”.

• TF-IDF is tf(t,d)*log(1/df(t,D)).



Term Frequency – Inverse Document Frequency

• The TF-IDF statistic is tf(t,d)*log(1/df(t,D)).
– It’s high if word ‘t’ happens often in document ‘d’, but isn’t common.
– E.g., seeing “LeBron” a lot it tells you something about “topic” of article.
– E.g., seeing “the” a lot tells you nothing.

• There are *many* variations on this statistic.
– E.g., avoiding dividing by zero and all types of “frequencies”.

• Summarizing ‘n’ documents into a matrix X:
– Each row corresponds to a document.
– Each column gives the TF-IDF value of a particular word in the document.



Latent Semantic Indexing
• TF-IDF features are very redundant.
– Consider TF-IDFs of “LeBron”, “Durant”, “Harden”, and “Kobe”. 
– High values of these typically just indicate topic of “basketball”.

• We can probably compress this information quite a bit.

• Latent Semantic Indexing/Analysis:
– Run latent-factor model (like PCA or NMF) on TF-IDF matrix X.
– Treat the principal components as the “topics”.
– Latent Dirichlet allocation is a variant that avoids weird df(t,D) heuristic.


