CPSC 340: Machine Learning and Data Mining

More PCA

Last Time: Latent-Factor Models

- Latent-factor models take input data ' X ' and output ' Z ':

- Usually, 'Z' has fewer features than ' X '.
- Uses: dimensionality reduction, visualization, factor discovery.

Trait	Description
Openness	Being curious, original, intellectual, creative, and open to new ideas.
Conscientiousness	Being organized, systematic, punctual, achievement- oriented, and dependable.
Extraversion	Being outgoing, talkative, sociable, and enjoying social situations.
Agreeableness	Being affable, tolerant, sensitive, trusting, kind, and warm.
Neuroticism	Being anxious, irritable, temperamental, and moody.

Last Time: Principal Component Analysis

- Principal component analysis (PCA) is a linear latent-factor model:
- These models "factorize" matrix X into matrices Z and W :

$$
X \underset{n \times d}{ } \approx \prod_{n \times k} W_{k \times d} \quad x_{i} \approx W^{\top} z_{i} \quad x_{i j} \approx\left\langle w^{j}, z_{i}\right\rangle
$$

- We can think of rows w_{c} of W as " k ' fixed "part" (used in all examples).
$-z_{i}$ is the "part weights" for example x_{i} : "how much of each part w_{c} to use".

Top-10 ML Algorithms

1. Decision trees
2. Naïve Bayes classification
3. Ordinary least squares regression
4. Logistic regression
5. Support vector machines
6. Ensemble methods
7. Clustering algorithms
8. Principal component analysis
9. Singular value decomposition
10. Independent component analysis (bonus)

> The 10 Algorithms Machine Learning Engineers Need to Know

Next Topic: PCA Loss Function and Prediction

PCA Objective Function

- In PCA we minimize the squared error of the approximation:

$$
f(W, 2)=\sum_{i=1}^{n}\|\underbrace{W^{\top} z_{i}}_{\text {aproximation in }}-\underbrace{x_{i}}_{\text {example }}\|^{2}
$$

- This is equivalent to the k-means objective:
- In k-means z_{i} only has a single ' 1 ' value and other entries are zero.
- But in PCA, z_{i} can be any real number.
- We approximate x_{i} as a linear combination of all means/factors.

PCA Objective Function

- In PCA we minimize the squared error of the approximation:
- We can also view this as solving 'd' regression problems:
- Each w' is trying to predict column ' x ' from the low-dimensional representation z_{i}.
- The output " y_{i} " we try to predict here is actually the features " x_{i} ".
- Unlike in regression we are also learning the features z_{i}.

Principal Component Analysis (PCA)

- The 3 different ways to write the PCA objective function:

$$
\begin{aligned}
f(W, z) & =\sum_{i=1}^{n} \sum_{j=1}^{d}\left(\left\langle W^{j}, z_{i}\right\rangle-x_{j}\right)^{2} & & \text { (approximating } x_{i j} \text { by }\left\langle w^{j} z_{i}\right\rangle \\
& =\sum_{i=1}^{n}\left\|W^{\top} z_{i}-x_{i}\right\|^{2} & & \text { (approximations } \left.x_{i} \text { by } W_{z_{i}}^{\top}\right) \\
& =\|Z W-X\|_{F}^{2} & & \text { (approximatio ny } x \text { by } Z W)
\end{aligned}
$$

Digression: Data Centering (Important)

- In PCA, we assume that the data X is "centered".
- Each column of X has a mean of zero.
- It's easy to center the data:

$$
\begin{aligned}
& \text { Set } \mu_{j}=\frac{1}{n} \sum_{i=1}^{n} x_{i j} \quad \text { (mean of colum }{ }_{j} \text {) } \\
& \text { Replace each } x_{i j} \text { with }\left(x_{i j}-\mu_{j}\right)
\end{aligned}
$$

- There are PCA variations that estimate "bias in each coordinate".
- In basic model this is equivalent to centering the data.

Digression: Data Centering (Important)

Next Topic: Eigenfaces

Application: Face Detection

- Consider the problem of face detection:

- Classic methods use "eigenfaces" as basis:
- PCA applied to images of faces.

Eigenfaces

- Collect a bunch of images of faces under different conditions:

Eigenfaces

Compute mean μ_{j} of each column. Each row of x will be parks in one image.

$$
X=\left[\begin{array}{c}
-x_{1}-\mu \\
x_{2}-\mu \\
\vdots \\
\vdots \\
-x_{n}-\mu
\end{array}\right]
$$

Replace each $x_{i j}$ by $x_{i j}-\mu_{j}$

Eigenfaces

Compute top ' k ' PCs on centers doa: Each row of X will be pipits in one mages

$$
X=\left[\begin{array}{c}
-x_{1}-\mu \\
x_{2}-\mu \\
\vdots \\
\vdots \\
x_{n}-\mu
\end{array}\right]
$$

Eigenfaces

Compute toos ' k ' $P C_{s}$ on centered dula:

Eigenfaces

Compute top ' k ' PCs on centered data:

Eigenfaces
100 of the original faces:

"Eigenface" representation:

Eigenfaces
Reconstruction with $k=0$

Eigenfaces

Eigenfaces
Reconstruction with $k=3$

Eigenfaces

Variance explained: 80%

Eigenfaces

Reconstruction with $k=10$

Variance explained: 85%

Eigenfaces

Variance explained: 90%

Eigenfaces

Variance explained: 95%

Eigenfaces

Next Topic: Non-Uniqueness of PCA

Non-Uniqueness of PCA

- Unlike k-means, we can efficiently find global optima of $f(\mathrm{~W}, \mathrm{Z})$.
- Algorithms coming later.
- Unfortunately, there never exists a unique global optimum.
- There are actually several different sources of non-uniqueness.
- To understand these, we'll need idea of "span" from linear algebra.
- This also helps explain the geometry of PCA.
- We'll also see that some global optima may be better than others.

Span of 1 Vector

- Consider a single vector $\mathrm{w}_{1}(\mathrm{k}=1)$.

Span of 1 Vector

- Consider a single vector $\mathrm{w}_{1}(\mathrm{k}=1)$.
- The $\operatorname{span}\left(w_{1}\right)$ is all vectors of the form $z_{i} w_{1}$ for a scalar z_{i}.

Span of 1 Vector

- Consider a single vector $\mathrm{w}_{1}(\mathrm{k}=1)$.
- The $\operatorname{span}\left(w_{1}\right)$ is all vectors of the form $z_{i} w_{1}$ for a scalar z_{i}.

- If $\mathrm{w}_{1} \neq 0$, this forms a line.

Span of 1 Vector

- But note that the "span" of many different vectors gives same line.
- Mathematically: αw_{1} defines the same line as w_{1} for any scalar $\alpha \neq 0$.

- PCA solution can only be defined up to scalar multiplication.
- If (W, Z) is a solution, then $(\alpha W,(1 / \alpha) Z)$ is also a solution. $\left\|(\alpha W)\left(\frac{1}{\alpha} Z\right)-X\right\|_{f}^{2}=\|W Z-X\|_{f}^{2}$

Span of 2 Vectors

- Consider two vector w_{1} and $\mathrm{w}_{2}(\mathrm{k}=2)$.

Span of 2 Vectors

- Consider two vector w_{1} and $\mathrm{w}_{2}(\mathrm{k}=2)$.
- The $\operatorname{span}\left(w_{1}, w_{2}\right)$ is all vectors of form $\mathrm{z}_{i 1} \mathrm{w}_{1}+\mathrm{z}_{\mathrm{i} 2} \mathrm{w}_{2}$ for a scalars $\mathrm{z}_{\mathrm{i} 1}$ and z_{i}.

Span of 2 Vectors

- Consider two vector w_{1} and $\mathrm{w}_{2}(\mathrm{k}=2)$.
- The $\operatorname{span}\left(w_{1}, w_{2}\right)$ is all vectors of form $z_{i 1} w_{1}+z_{i 2} w_{2}$ for a scalars $z_{i 1}$ and $z_{i 2}$.

Span of 2 Vectors

- Consider two vector w_{1} and $w_{2}(k=2)$.
- The $\operatorname{span}\left(w_{1}, w_{2}\right)$ is all vectors of form $\mathrm{z}_{i 1} \mathrm{w}_{1}+\mathrm{z}_{\mathrm{i} 2} \mathrm{w}_{2}$ for a scalars $\mathrm{z}_{\mathrm{i} 1}$ and z_{i}.

- For most non-zero 2 d vectors, $\operatorname{span}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)$ is a plane.
- In the case of two vectors in R^{2}, the plane will be *all* of R^{2}.

Span of 2 Vectors

- Consider two vector w_{1} and $w_{2}(k=2)$.
- The $\operatorname{span}\left(w_{1}, w_{2}\right)$ is all vectors of form $z_{i 1} w_{1}+z_{i 2} w_{2}$ for a scalars $z_{i 1}$ and $z_{i 2}$.

- For most non-zero $2 d$ vectors, $\operatorname{span}\left(w_{1}, w_{2}\right)$ is plane.
- Exception is if w_{2} is in span of w_{1} ("collinear"), then $\operatorname{span}\left(w_{1}, w_{2}\right)$ is just a line.

Span of 2 Vectors

- Consider two vector w_{1} and $w_{2}(k=2)$.
- The $\operatorname{span}\left(w_{1}, w_{2}\right)$ is all vectors of form $\mathrm{z}_{i 1} \mathrm{w}_{1}+\mathrm{z}_{\mathrm{i} 2} \mathrm{w}_{2}$ for a scalars $\mathrm{z}_{\mathrm{i} 1}$ and z_{i}.

- We have label switching: $\operatorname{span}\left(w_{1}, w_{2}\right)=\operatorname{span}\left(w_{2}, w_{1}\right)$.
- We can rotate factors within the plane (if not rotated to be collinear).

Span of 2 Vectors

- 2 tricks to make vectors defining a plane "more unique":
- Normalization: enforce that $\left|\left|w_{1}\right|\right|=1$ and $\left|\left|w_{2}\right|\right|=1$.

Span of 2 Vectors

- 2 tricks to make vectors defining a plane "more unique":
- Normalization: enforce that $\left|\left|w_{1}\right|\right|=1$ and $\left|\left|w_{2}\right|\right|=1$.

Span of 2 Vectors

- 2 tricks to make vectors defining a plane "more unique":
- Normalization: enforce that $\left|\left|w_{1}\right|\right|=1$ and $\left|\left|w_{2}\right|\right|=1$.
- Orthogonality: enforce that $\mathrm{w}_{1}{ }^{\top} \mathrm{w}_{2}=0$ ("perpendicular").

Digression: PCA only makes sense for $\mathrm{k} \leq \mathrm{d}$

- Remember our clustering dataset with 4 clusters:

- It doesn't make sense to use PCA with $\mathrm{k}=4$ on this dataset.
- We only need two vectors [10] and [0 1] to exactly represent all 2d points.
- With $k=2$, I could set $Z=X$ and $W=I$ to get $X=Z W$ exactly.

Span in Higher Dimensions

- In higher-dimensional spaces:
- Span of 1 non-zero vector w_{1} is a line.
- Span of 2 non-zero vectors w_{1} and w_{2} is a plane (if not collinear).
- Span of 3 non-zeros vectors $\left\{w_{1}, w_{2}, w_{3}\right\}$ is a $3 d$ space (if not "coplanar").
- ...
- This is how the W matrix in PCA defines lines, planes, spaces, etc.
- Each time we increase ' k ', we add an extra "dimension" to the "subspace".

Making PCA (More) Unique

- We've identified several reasons that optimal W is non-unique:
- I can multiply any w_{c} by any non-zero α.
- I can rotate any w_{c} almost arbitrarily within the span.
- I can switch any w_{c} with any other $w_{c^{\prime}}$.
- PCA implementations add constraints to make solution unique:
- Normalization: we enforce that $\|\left|w_{c}\right| \mid=1$.
- Orthogonality: we enforce that $w_{c}^{\top} w_{c^{\prime}}=0$ for all $c \neq c^{\prime}$.
- Sequential fitting: We first fit w_{1} ("first principal component") giving a line.
- Then fit w_{2} given w_{1} ("second principal component") giving a plane.
- Then we fit w_{3} given w_{1} and w_{2} ("third principal component") giving a space.

Basis, Orthogonality, Sequential Fitting

Basis, Orthogonality, Sequential Fitting

Any non-parrallel line gives optimal solution to second PC (who nd=2)
\square I can get 0 error on every data point.

(both PG g give similar information)

Basis, Orthogonality, Sequential Fitting

Any non-parrallel line gives optimal solution to second PC (whe nd=2)

Basis, Orthogonality, Sequential Fitting

Next Topic: Optimizing the PCA Objective

Finding the First Principal Axis

Let $\mathbf{z}_{1} \in \mathbb{R}^{N}$ be the coefficients associated with \mathbf{w}_{1} across all the N data points
We first find \mathbf{w}_{1} and \mathbf{z}_{1}. We assume that \mathbf{w}_{i} are unit vectors.

$$
\begin{aligned}
\mathcal{L}\left(\mathbf{w}_{1}, \mathbf{z}_{1}\right) & =\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-z_{n, 1} \mathbf{w}_{1}\right)^{\mathrm{T}}\left(\mathbf{x}_{n}-z_{n, 1} \mathbf{w}_{1}\right) \\
& =\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}_{n}^{\mathrm{T}} \mathbf{x}_{n}-2 z_{n, 1} \mathbf{x}_{n}^{\mathrm{T}} \mathbf{w}_{1}+z_{n, 1}^{2} \mathbf{w}_{1}^{\mathrm{T}} \mathbf{w}_{1}\right)
\end{aligned}
$$

Thus, we get

$$
z_{n, 1}=\frac{\mathbf{x}_{n}^{\mathrm{T}} \mathbf{w}_{1}}{\mathbf{w}_{1}^{\mathrm{T}} \mathbf{w}_{1}}=\mathbf{x}_{n}^{\mathrm{T}} \mathbf{w}_{1}
$$

Finding the First Principal Axis

Back-substituting $z_{n, 1}$ into $\mathcal{L}\left(\mathbf{w}_{1}, \mathbf{z}_{1}\right)$, we get

$$
\begin{aligned}
\mathcal{L}\left(\mathbf{w}_{1}, \mathbf{z}_{1}\right) & =-\frac{1}{N} \sum_{n=1}^{N} \mathbf{w}_{1}^{\mathrm{T}} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathrm{T}} \mathbf{w}_{1}+\text { const } \\
& =-\mathbf{w}_{1}^{\mathrm{T}} \boldsymbol{\Sigma} \mathbf{w}_{1}+\text { const }
\end{aligned}
$$

Here, $\boldsymbol{\Sigma}$ is the empirical covariance matrix
To minimize $-\mathbf{w}_{1}^{\mathrm{T}} \boldsymbol{\Sigma} \mathbf{w}_{1}$, we add a constraint $\mathbf{w}_{1}^{\mathrm{T}} \mathbf{w}_{1}=1$ to prevent trival solution

Finding the First Principal Axis

The constrained optimization problem is as follows:

$$
\mathcal{L}\left(\mathbf{w}_{1}, \mathbf{z}_{1}\right)=-\mathbf{w}_{1}^{\mathrm{T}} \boldsymbol{\Sigma} \mathbf{w}_{1}+\lambda\left(\mathbf{w}_{1}^{\mathrm{T}} \mathbf{w}_{1}-1\right)
$$

We further get $-2 \boldsymbol{\Sigma} \mathbf{w}_{1}+2 \lambda \mathbf{w}_{1}=0 \Leftrightarrow \boldsymbol{\Sigma} \mathbf{w}_{1}=\lambda \mathbf{w}_{1}$
To minimize $-\mathbf{w}_{1}^{\mathrm{T}} \boldsymbol{\Sigma} \mathbf{w}_{1}=-\lambda, \mathbf{w}_{1}$ must be the first eigenvector of $\boldsymbol{\Sigma}$ with the largest eigen value

We can then find $\mathbf{z}_{2} \in \mathbb{R}^{N}$ and $\mathbf{w}_{2} \in \mathbb{R}^{D}$ after subtracting $\mathbf{z}_{1} \mathbf{w}_{1}^{T}$ from \mathbf{X}
This process can be repeated and we get \mathbf{W} whose rows (for our course) are the top K eigenvectors of the empirical covariance matrix $\boldsymbol{\Sigma}$

Maximizing the Variance of the Projected Data

Let $\mathbf{z}_{1} \in \mathbb{R}^{N}$ be the coefficients associated with \mathbf{w}_{1} across all the N data points

$$
\begin{aligned}
& \mathbb{E}\left(Z_{n, 1}\right)=\mathbb{E}\left(\mathbf{x}_{n}^{\mathrm{T}} \mathbf{w}_{1}\right)=\left(\mathbb{E}\left(\mathbf{x}_{n}\right)\right)^{\mathrm{T}} \mathbf{w}_{1}=0 \\
& \mathbb{V}\left(Z_{n, 1}\right)=\frac{1}{N} \sum_{n=1}^{N} \mathbf{w}_{1}^{\mathrm{T}} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathrm{T}} \mathbf{w}_{1}=\mathbf{w}_{1}^{\mathrm{T}} \boldsymbol{\Sigma} \mathbf{w}_{1}=\lambda_{1}
\end{aligned}
$$

PCA Workflow

PCA Computation: SVD

- How do we fit with normalization/orthogonality/sequential-fitting?
- It can be done with the "singular value decomposition" (SVD).
- Take CPSC 302.
- 4 lines of Python code:
$-\mathrm{mu}=\mathrm{np} . \operatorname{mean}(\mathrm{X}, \mathrm{axis}=0)$
- X-= mu
$-\mathrm{U}, \mathrm{s}, \mathrm{Vh}=\mathrm{np} . \operatorname{linalg} . \operatorname{svd}(\mathrm{X})$
$-\mathrm{W}=\mathrm{Vh}[: \mathrm{k}]$
- Computing \tilde{Z} is cheaper now:

$$
\tilde{\Sigma}=\tilde{X} W^{\top}(\underbrace{W} W^{\top})^{-1}=\tilde{X} W^{\top}
$$

$$
W W^{\top}=\left[\begin{array}{c}
-w_{1} \\
-w_{2} \\
\vdots \\
w_{k}
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
w_{1}^{\top} & 1 & 1 \\
w_{2}^{\top} & w_{k}^{\top} \\
1 & 1 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
1 & 0 & 0 \\
6 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & -0 & 0
\end{array}\right]=I
$$

PCA Computation: Prediction

- At the end of training, the "model" is the μ_{j} and the W matrix.
- PCA is parametric.
- PCA prediction phase:
- Given new data \tilde{X}, we can use μ_{j} and W to form \tilde{Z} :

1. Center: replace each $\tilde{x}_{i j}$ with $\left(\tilde{x}_{i j}-\mu_{j}\right)$
2. Find \tilde{Z} minimizing squared error:

$$
\tilde{z}=\tilde{\chi} \underbrace{w^{\top}\left(w w^{\top}\right)^{-1}}_{\substack{\text { Could just store } \\ \text { this d dk matrix) }}}
$$

Choosing ' k ' by "Variance Explained"

- Common to choose ' k ' based on variance of the $x_{i j}$.

$$
\operatorname{Var}\left(x_{i j}\right)=\underbrace{E}_{\begin{array}{c}
\text { definition of } \\
\text { variance }
\end{array}}[(x_{i j}-\underbrace{}_{\substack{\mu_{i j}}})^{2}]=E\left[x_{i j}^{2}\right]=\frac{1}{\text { assumed to }} \text { be zero } \underbrace{E}_{\begin{array}{c}
\text { definition of } \\
\text { expectation }
\end{array}} \sum_{i=1}^{n} \underbrace{\sum_{j=1}^{d} x_{i j}^{2}}_{\text {Frobomius norm }}=\frac{1}{n d}\|X\|_{F}^{2}
$$

- For a given ' k ' we compute (variance of errors)/(variance of x_{ij}):

$$
\frac{\|2 W-X\|_{F}^{2}}{\|x\|_{F}^{2} T}
$$

- Gives a number between $0(k=d)$ and $1(k=0)$, giving "variance remaining".
- If you want to "explain 90% of variance", choose smallest ' k ' where ratio is <0.10.

"Variance Explained" in the Doom Map

- Recall the Doom latent-factor model (where map ignores height):

- Interpretation of "variance remaining" formula:
- If we had a 3D map the "variance remaining" would be 0.

Summary

- PCA objective:
- Minimizes squared error between elements of X and elements of $Z W$.
- Eigenfaces
- PCA non-uniqueness:
- Due to scaling, rotation, and label switching.
- Orthogonal basis and sequential fitting of PCs (via SVD):
- Leads to non-redundant PCs with unique directions.
- Choosing ' k ':
- We can choose ' k ' to explain "percentage of variance" in the data.
- Next time: cancer signatures and NBA shot charts.

