CPSC 340: Machine Learning and Data Mining

More PCA

Last Time: Latent-Factor Models

Latent-factor models take input data 'X' and output 'Z':

- Usually, 'Z' has fewer features than 'X'.
- Uses: dimensionality reduction, visualization, factor discovery.

Trait	Description
O penness	Being curious, original, intellectual, creative, and open to new ideas.
Conscientiousness	Being organized, systematic, punctual, achievement- oriented, and dependable.
Extraversion	Being outgoing, talkative, sociable, and enjoying social situations.
Agreeableness	Being affable, tolerant, sensitive, trusting, kind, and warm.
Neuroticism	Being anxious, irritable, temperamental, and moody.

Last Time: Principal Component Analysis

- Principal component analysis (PCA) is a linear latent-factor model:
 - These models "factorize" matrix X into matrices Z and W:

- We can think of rows w_c of W as 'k' fixed "part" (used in all examples).
- $-z_i$ is the "part weights" for example x_i : "how much of each part w_c to use".

Top-10 ML Algorithms

- 1. Decision trees
- 2. Naïve Bayes classification
- 3. Ordinary least squares regression
- 4. Logistic regression
- 5. Support vector machines
- 6. Ensemble methods
- 7. Clustering algorithms
- 8. Principal component analysis
- 9. Singular value decomposition
- 10. Independent component analysis (bonus)

The 10 Algorithms Machine Learning Engineers Need to Know

Next Topic: PCA Loss Function and Prediction

PCA Objective Function

In PCA we minimize the squared error of the approximation:

$$f(W,Z) = \sum_{i=1}^{n} ||W^{T}_{Z_{i}} - x_{i}||^{2}$$
approximation example (1)

- This is equivalent to the k-means objective:
 - In k-means z_i only has a single '1' value and other entries are zero.
- But in PCA, z_i can be any real number.
 - We approximate x_i as a linear combination of all means/factors.

PCA Objective Function

In PCA we minimize the squared error of the approximation:

$$f(W,Z) = \sum_{j=1}^{2} ||W^{T}_{Z_{i}} - x_{i}||^{2} = \sum_{j=1}^{2} \left(\langle w_{j}z_{j} \rangle - x_{ij} \right)^{2}$$
approximation example 'i' i=1 j=1 approximation feature's of example 'i'

- We can also view this as solving 'd' regression problems:
 - Each w^j is trying to predict column ' $x^{j'}$ from the low-dimensional representation z_i .
 - The output "y_i" we try to predict here is actually the features "x_i".
 - Unlike in regression we are also learning the features z_i .

Principal Component Analysis (PCA)

The 3 different ways to write the PCA objective function:

$$f(W,Z) = \sum_{i=1}^{S} \sum_{j=1}^{d} (\langle w_{i}, z_{i} \rangle - x_{ij})^{2} \qquad (approximating x_{ij} by \langle w_{i}, z_{i} \rangle)$$

$$= \sum_{i=1}^{S} ||W^{T}z_{i} - x_{i}||^{2} \qquad (approximating x_{i} by W_{Z_{i}}^{T})$$

$$= ||ZW - X||_{F}^{2} \qquad (approximating X_{ij} by ZW_{Z_{ij}})$$

Digression: Data Centering (Important)

- In PCA, we assume that the data X is "centered".
 - Each column of X has a mean of zero.

• It's easy to center the data:

Set
$$M_j = \frac{1}{n} \sum_{i=1}^{n} x_{ij}$$
 (mean of colum 'j')

Replace each x_{ij} with $(x_{ij} - M_j)$

- There are PCA variations that estimate "bias in each coordinate".
 - In basic model this is equivalent to centering the data.

Digression: Data Centering (Important)

https://stats.stackexchange.com/questions/22329/how-does-centering-the-data-get-rid-of-the-intercept-in-regression-and-

Next Topic: Eigenfaces

Application: Face Detection

Consider the problem of face detection:

- Classic methods use "eigenfaces" as basis:
 - PCA applied to images of faces.

Application: Face Detection

Collect a bunch of images of faces under different conditions:

Compute top 'k' PCs on centered duta: Each row of X will be pixels in one image:

Compute top 'k' PCs on centered dula:

$$\hat{x}_{i} = \frac{1}{2} + \frac{1$$

100 of the original faces:

"Eigenface" representation:

Reconstruction with K= 0

Variance explained: 0%

"Eigenface" representation: $+ z_{i1} + z_{i2} + z_{i3} + z_{i3} + z_{i3} + z_{i4}$ (first row of W)

Reconstruction with K=1

PCA Visualization

"Eigenface" representation:

$$\hat{x}_{i} = \mathcal{U} + Z_{i1} + Z_{i2} + Z_{i3} + \cdots$$

$$\hat{x}_{i} = \mathcal{U} + Z_{i1} + Z_{i2} + Z_{i3} + \cdots$$

Variance explained: 36%

PC3

Reconstruction with K=2

Variance explained: 71%

PCA Visualization

PCI PC2 (first row of W)

Reconstruction with K= 3

Variance explained: 76%

Eigenfaces

PCA Visualization

"Eigenface" representation:

$$\hat{X}_{i} = 1 + Z_{i1} + Z_{i2} + Z_{i3} + Z_{i3} + Z_{i3}$$

$$\hat{X}_{i} = 1 + Z_{i1} + Z_{i2} + Z_{i3} + Z_{i3}$$

Reconstruction with K=5

Variance explained: 80°/0

Reconstruction with K=10

Variance explained: 85%

Reconstruction with K=21

Variance explained: 90%

Reconstruction with K=54

Variance explained: 95%

Plus these "eigenfaces" S and the mean,

We con replace 1024 x; values by 54 z; values

Next Topic: Non-Uniqueness of PCA

Non-Uniqueness of PCA

- Unlike k-means, we can efficiently find global optima of f(W,Z).
 - Algorithms coming later.

- Unfortunately, there never exists a unique global optimum.
 - There are actually several different sources of non-uniqueness.

- To understand these, we'll need idea of "span" from linear algebra.
 - This also helps explain the geometry of PCA.
 - We'll also see that some global optima may be better than others.

Consider a single vector w₁ (k=1).

- Consider a single vector w₁ (k=1).
- The span(w₁) is all vectors of the form z_iw₁ for a scalar z_i.

- Consider a single vector w₁ (k=1).
- The span(w_1) is all vectors of the form $z_i w_1$ for a scalar z_i .

• If $w_1 \neq 0$, this forms a line.

- But note that the "span" of many different vectors gives same line.
 - Mathematically: αw_1 defines the same line as w_1 for any scalar $\alpha \neq 0$.

- PCA solution can only be defined up to scalar multiplication.
 - If (W,Z) is a solution, then $(\alpha W,(1/\alpha)Z)$ is also a solution. $\|(\alpha W)(\frac{1}{\alpha}Z)-\chi\|_F^2=\|W2-\chi\|_F^2$

Consider two vector w₁ and w₂ (k=2).

- Consider two vector w₁ and w₂ (k=2).
 - The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .

- Consider two vector w₁ and w₂ (k=2).
 - The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .

- Consider two vector w_1 and w_2 (k=2).
 - The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .

- For most non-zero 2d vectors, span(w_1, w_2) is a plane.
 - In the case of two vectors in R², the plane will be *all* of R².

Consider two vector w₁ and w₂ (k=2).

- The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .

- For most non-zero 2d vectors, span(w_1, w_2) is plane.
 - Exception is if w_2 is in span of w_1 ("collinear"), then span(w_1, w_2) is just a line.

- Consider two vector w₁ and w₂ (k=2).
 - The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .

- New issues for PCA $(k \ge 2)$:
 - We have label switching: span(w_1, w_2) = span(w_2, w_1).
 - We can rotate factors within the plane (if not rotated to be collinear).

- 2 tricks to make vectors defining a plane "more unique":
 - Normalization: enforce that $||w_1|| = 1$ and $||w_2|| = 1$.

- 2 tricks to make vectors defining a plane "more unique":
 - Normalization: enforce that $||w_1|| = 1$ and $||w_2|| = 1$.

- 2 tricks to make vectors defining a plane "more unique":
 - Normalization: enforce that $||w_1|| = 1$ and $||w_2|| = 1$.
 - Orthogonality: enforce that $w_1^T w_2 = 0$ ("perpendicular").

- Now I can't grow/shrink vectors (though I can still reflect).
- Now I can't rotate one vector (but I can still rotate *both*).

Digression: PCA only makes sense for k ≤ d

Remember our clustering dataset with 4 clusters:

- It doesn't make sense to use PCA with k=4 on this dataset.
 - We only need two vectors [1 0] and [0 1] to exactly represent all 2d points.
 - With k=2, I could set Z=X and W=I to get X=ZW exactly.

Span in Higher Dimensions

- In higher-dimensional spaces:
 - Span of 1 non-zero vector w₁ is a line.
 - Span of 2 non-zero vectors w_1 and w_2 is a plane (if not collinear).
 - Span of 3 non-zeros vectors $\{w_1, w_2, w_3\}$ is a 3d space (if not "coplanar").

— ...

- This is how the W matrix in PCA defines lines, planes, spaces, etc.
 - Each time we increase 'k', we add an extra "dimension" to the "subspace".

Making PCA (More) Unique

- We've identified several reasons that optimal W is non-unique:
 - I can multiply any w_c by any non-zero α .
 - I can rotate any w_c almost arbitrarily within the span.
 - I can switch any w_c with any other $w_{c'}$.

- PCA implementations add constraints to make solution unique:
 - Normalization: we enforce that $||w_c|| = 1$.
 - Orthogonality: we enforce that $w_c^T w_{c'} = 0$ for all $c \neq c'$.
 - Sequential fitting: We first fit w_1 ("first principal component") giving a line.
 - Then fit w_2 given w_1 ("second principal component") giving a plane.
 - Then we fit w_3 given w_1 and w_2 ("third principal component") giving a space.

http://setosa.io/ev/principal-component-analysis

Next Topic: Optimizing the PCA Objective

Finding the First Principal Axis

Let $\mathbf{z}_1 \in \mathbb{R}^N$ be the coefficients associated with \mathbf{w}_1 across all the N data points

We first find w_1 and z_1 . We assume that w_i are unit vectors.

$$egin{aligned} \mathcal{L}(\mathbf{w}_1, \mathbf{z}_1) &= rac{1}{N} \sum_{n=1}^N (\mathbf{x}_n - z_{n,1} \mathbf{w}_1)^\mathrm{T} (\mathbf{x}_n - z_{n,1} \mathbf{w}_1) \ &= rac{1}{N} \sum_{n=1}^N (\mathbf{x}_n^\mathrm{T} \mathbf{x}_n - 2 z_{n,1} \mathbf{x}_n^\mathrm{T} \mathbf{w}_1 + z_{n,1}^2 \mathbf{w}_1^\mathrm{T} \mathbf{w}_1) \end{aligned}$$

Thus, we get

$$z_{n,1} = rac{\mathbf{x}_n^{\mathrm{T}} \mathbf{w}_1}{\mathbf{w}_1^{\mathrm{T}} \mathbf{w}_1} = \mathbf{x}_n^{\mathrm{T}} \mathbf{w}_1$$

Finding the First Principal Axis

Back-substituting $z_{n,1}$ into $\mathcal{L}(\mathbf{w}_1, \mathbf{z}_1)$, we get

$$\mathcal{L}(\mathbf{w}_1, \mathbf{z}_1) = -\frac{1}{N} \sum_{n=1}^{N} \mathbf{w}_1^{\mathrm{T}} \mathbf{x}_n \mathbf{x}_n^{\mathrm{T}} \mathbf{w}_1 + \mathsf{const}$$

$$= -\mathbf{w}_1^{\mathrm{T}} \mathbf{\Sigma} \mathbf{w}_1 + \mathsf{const}$$

Here, Σ is the empirical covariance matrix

To minimize $-\mathbf{w}_1^T \mathbf{\Sigma} \mathbf{w}_1$, we add a constraint $\mathbf{w}_1^T \mathbf{w}_1 = 1$ to prevent trival solution

Finding the First Principal Axis

The constrained optimization problem is as follows:

$$\mathcal{L}(\mathbf{w}_1, \mathbf{z}_1) = -\mathbf{w}_1^{\mathrm{T}} \mathbf{\Sigma} \mathbf{w}_1 + \lambda (\mathbf{w}_1^{\mathrm{T}} \mathbf{w}_1 - 1)$$

We further get $-2\Sigma \mathbf{w}_1 + 2\lambda \mathbf{w}_1 = 0 \Leftrightarrow \Sigma \mathbf{w}_1 = \lambda \mathbf{w}_1$

To minimize $-\mathbf{w}_1^T \mathbf{\Sigma} \mathbf{w}_1 = -\lambda$, \mathbf{w}_1 must be the first eigenvector of $\mathbf{\Sigma}$ with the largest eigen value

We can then find $\mathbf{z}_2 \in \mathbb{R}^N$ and $\mathbf{w}_2 \in \mathbb{R}^D$ after subtracting $\mathbf{z}_1\mathbf{w}_1^\mathrm{T}$ from \mathbf{X}

This process can be repeated and we get ${f W}$ whose rows (for our course) are the top K eigenvectors of the empirical covariance matrix ${f \Sigma}$

Maximizing the Variance of the Projected Data

Let $\mathbf{z}_1 \in \mathbb{R}^N$ be the coefficients associated with \mathbf{w}_1 across all the N data points

$$\mathbb{E}(Z_{n,1}) = \mathbb{E}(\mathbf{x}_n^{\mathrm{T}}\mathbf{w}_1) = (\mathbb{E}(\mathbf{x}_n))^{\mathrm{T}}\mathbf{w}_1 = 0$$

$$\mathbb{V}(Z_{n,1}) = rac{1}{N} \sum_{n=1}^N \mathbf{w}_1^{\mathrm{T}} \mathbf{x}_n \mathbf{x}_n^{\mathrm{T}} \mathbf{w}_1 = \mathbf{w}_1^{\mathrm{T}} \mathbf{\Sigma} \mathbf{w}_1 = \lambda_1$$

PCA Workflow

PCA Computation: SVD

- How do we fit with normalization/orthogonality/sequential-fitting?
 - It can be done with the "singular value decomposition" (SVD).
 - Take CPSC 302.

- 4 lines of Python code:
 - mu = np.mean(X,axis=0)
 - − X -= mu
 - U,s,Vh = np.linalg.svd(X)
 - -W = Vh[:k]

• Computing $ilde{Z}$ is cheaper now:

$$\widetilde{Z} = \widetilde{X} W^{\mathsf{T}} (WW^{\mathsf{T}})^{-1} = \widetilde{X} W^{\mathsf{T}}$$

$$WW^{\mathsf{T}} = \begin{bmatrix} -W_{1} \\ -W_{2} \\ \end{bmatrix} \begin{bmatrix} W_{1}^{\mathsf{T}} W_{2}^{\mathsf{T}} & W_{k}^{\mathsf{T}} \end{bmatrix}$$

$$= \begin{bmatrix} 100 - 0 \\ 610 & 0 \\ 0 & -0 \end{bmatrix} = \mathbf{I}$$
61

PCA Computation: Prediction

- At the end of training, the "model" is the μ_i and the W matrix.
 - PCA is parametric.
- PCA prediction phase:
 - Given new data \tilde{X} , we can use μ_i and W to form \tilde{Z} :

1. Center: replace each
$$\tilde{x}_{ij}$$
 with $(\tilde{x}_{ij} - u_j)$

2. Find \tilde{Z} minimizing squared error:

$$\tilde{Z} = \tilde{X} W^T (WW^T)$$

Anto

(could just store
this dxk matrix)

Choosing 'k' by "Variance Explained"

Common to choose 'k' based on variance of the x_{ii}.

Var
$$(x_{ij}) = E[(x_{ij} - u_{ij})^2] = E[(x_{ij})^2] = \frac{1}{nd} \sum_{i=1}^{2} \frac{1}{j=1} \sum_{j=1}^{2} \frac{1}{j} = \frac{1}{nd} ||X||_F^2$$

Variance

Variance

Variance

Variance

- For a given 'k' we compute (variance of errors)/(variance of x_{ii}):

- Gives a number between 0 (k=d) and 1 (k=0), giving "variance remaining".
 - If you want to "explain 90% of variance", choose smallest 'k' where ratio is < 0.10.

"Variance Explained" in the Doom Map

Recall the Doom latent-factor model (where map ignores height):

Interpretation of "variance remaining" formula:

• If we had a 3D map the "variance remaining" would be 0.

Summary

- PCA objective:
 - Minimizes squared error between elements of X and elements of ZW.
- Eigenfaces
- PCA non-uniqueness:
 - Due to scaling, rotation, and label switching.
- Orthogonal basis and sequential fitting of PCs (via SVD):
 - Leads to non-redundant PCs with unique directions.
- Choosing 'k':
 - We can choose 'k' to explain "percentage of variance" in the data.
- Next time: cancer signatures and NBA shot charts.