
CPSC 340:
Machine Learning and Data Mining

Principal Component Analysis

Last Time: MAP Estimation
• MAP estimation maximizes posterior:

• Likelihood measures probability of labels ‘y’ given parameters ‘w’.
• Prior measures probability of parameters ‘w’ before we see data.
• For IID training data and independent priors, equivalent to using:

• So log-likelihood is an error function, and log-prior is a regularizer.
– Squared error comes from Gaussian likelihood.
– L2-regularization comes from Gaussian prior.

The Story So Far…
• Part 1: Supervised Learning.
– Methods based on counting and distances.

• Part 2: Unsupervised Learning.
– Methods based on counting and distances.

• Part 3: Supervised Learning (just finished).
– Methods based on linear models and gradient descent.

• Part 4: Unsupervised Learning (today).
– Methods based on linear models and gradient descent.

Motivation: Human vs. Machine Perception
• Huge difference between what we see and what computer sees:

• But maybe images shouldn’t be written as combinations of pixels.
– Can we learn a better representation?
– In other words, can we learn good features?

What we see: What the computer “sees”:

Motivation: Pixels vs. Parts
• Can view 28x28 image as weighted sum of “single pixel on” images:

– We have one image/feature for each pixel.
– The weights specify “how much of this pixel is in the image”.

• A weight of zero means that pixel is white, a weight of 1 means it’s black.

• This is non-intuitive, isn’t a “3” made of small number of “parts”?

– Now the weights are “how much of this part is in the image”.

Motivation: Pixels vs. Parts
• We could represent other digits as different combinations of “parts”:

• Consider replacing images xi by the weights zi of the different parts:
– The 784-dimensional xi for the “5” image is replaced by 7 numbers: zi = [1 0 1 1 1 0 1].
– Features like this could make learning much easier.

Part 4: Latent-Factor Models
• The “part weights” are a change of basis from xi to some zi.
– But in high dimensions, it can be hard to find a good basis.

• Part 4 is about learning the basis from the data.

• Why?
– Supervised learning: we could use “part weights” as our features.
– Outlier detection: it might be an outlier if isn’t a combination of usual parts.
– Dimension reduction: compress data into limited number of “part weights”.
– Visualization: if we have only 2 “part weights”, we can view data as a scatterplot.
– Interpretation: we can try and figure out what the “parts” represent.

Previously: Vector Quantization
• Recall using k-means for vector quantization:
– Run k-means to find a set of “means” wc.
– This gives a cluster !𝑦i for each object ‘i’.
– Replace features xi by mean of cluster:

• This can be viewed as a (really bad) latent-factor model.

Vector Quantization (VQ) as Latent-Factor Model

• If xi is in cluster 2, VQ approximates xi by mean w2 of cluster 2:

• So in this example we would have zi = [0 1 0 0].
– The “parts” are the means from k-means.
– VQ only uses one part (the “part” from the cluster).

Vector Quantization vs. PCA
• Viewing vector quantization as a latent-factor model:

• Suppose we’re doing supervised learning,
and the colours are the true labels ‘y’:
– Classification would be really easy

with this “k-means features” ‘Z’.

Vector Quantization vs. PCA
• Viewing vector quantization as a latent-factor model:

• But it only uses 1 part, it’s just memorizing ‘k’ points in xi space.
– What we want is combinations of parts.

• PCA is a generalization that allows continuous ‘zi’:
– It can have more than 1 non-zero.
– It can use fractional weights and negative weights.

Principal Component Analysis (PCA) Applications

• Principal component analysis (PCA) has been invented many times:

https://en.wikipedia.org/wiki/Principal_component_analysis

Principal Component Analysis (a Recent Review)

Principal Component Analysis (a Recent Review)

Principal Component Analysis (a Recent Review)

PCA Notation (MEMORIZE)
• PCA takes in a matrix ‘X’ and an input ‘k’, and outputs two matrices:

• For row ‘c’ of W, we use the notation wc.
– Each wc is a “part” (also called a “principal axis”, “factor”, or “principal

component”).
• For row ‘i’ of Z, we use the notation zi.
– Each zi is a set of “part weights” (or “low-dimensional repr.” or “features”).

• For column ‘j’ of W, we use the notation wj.
– Index ‘j’ of all the ‘k’ “parts” (value of pixel ‘j’ in all the different parts).

PCA Notation (MEMORIZE)
• PCA takes in a matrix ‘X’ and an input ‘k’, and outputs two matrices:

• With this notation, we can write approximation of the vector xi as:

PCA Notation (MEMORIZE)
• PCA takes in a matrix ‘X’ and an input ‘k’, and outputs two matrices:

• We can write our approximation of one xij as:

– K-means: “take index ‘j’ of closest mean”.
– PCA: “zi gives weights for index ‘j’ of all factors”.

Different views (MEMORIZE)
• PCA approximates each xij by the inner product < wj, zi >.
• PCA approximates each xi by the matrix-vector product WTzi.
• PCA approximates matrix ‘X’ by the matrix-matrix product ZW.

– PCA is also called a “matrix factorization” model.
– Both ‘Z’ and ‘W’ are variables.

• This can be viewed as a “change of basis” from xi to zi values.
– The “basis vectors” are the rows of W, the wc.
– The “coordinates” in the new basis of each xi are the zi.

Next Topic: PCA Applications

• Applications of PCA:
– Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z’.

• If k << d, then compresses data.
• Often better approximation than vector quantization.

PCA Applications

• Applications of PCA:
– Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z’.

• If k << d, then compresses data.
• Often better approximation than vector quantization.

PCA Applications

• Applications of PCA:
– Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z’.

• If k << d, then compresses data.
• Often better approximation than vector quantization.

PCA Applications

https://monsterlegacy.net/2013/03/04/rancor-star-wars/

• Applications of PCA:
– Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z’.

• If k << d, then compresses data.
• Often better approximation than vector quantization.

PCA Applications

https://monsterlegacy.net/2013/03/04/rancor-star-wars/

PCA Applications
• An essential step for scRNA-seq data analysis

• Applications of PCA:
– Outlier detection: if PCA gives poor approximation of xi, could be ‘outlier’.

• Though due to squared error PCA is sensitive to outliers.

PCA Applications

• Applications of PCA:
– Partial least squares: uses PCA features as basis for linear model.

PCA Applications

• Applications of PCA:
– Data visualization: plot zi with k = 2 to visualize high-dimensional objects.

http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.html

PCA Applications

• Applications of PCA:
– Data visualization: plot zi with k = 2 to visualize high-dimensional objects.

• Can augment other visualizations:

https://www.sciencedaily.com/releases/2018/01/180125140943.htm

PCA Applications

• Applications of PCA:
– Data interpretation: we can try to assign meaning to latent factors wc.

• Hidden “factors” that influence all the variables.

https://new.edu/resources/big-5-personality-traits

PCA Applications

"Most Personality Quizzes Are Junk Science. I Found One That Isn't."

https://fivethirtyeight.com/features/most-personality-quizzes-are-junk-science-i-found-one-that-isnt/

What is PCA actually doing?

When should PCA work well?

Today I just want to show geometry,
we’ll talk about implementation next time.

Doom Overhead Map and Latent-Factor Models

• Original “Doom” video game included an “overhead map” feature:

• This map can be viewed as a latent-factor model of player location.
https://en.wikipedia.org/wiki/Doom_(1993_video_game)
https://forum.minetest.net/viewtopic.php?f=5&t=9666

Overhead Map and Latent-Factor Models
• Actual player location at time ‘i’ can be described by 3 coordinates:

• The overhead map approximates these 3 coordinates with only 2:

• Our k=2 latent factors are the following:

• So our approximation of xi is:

Overhead Map and Latent-Factor Models
• The “overhead map” approximation just ignores the “height”.

– This is a good approximation if the world is flat.
• Even if the character jumps, the first two features will approximate location.

– But it’s a poor approximation if heights are different.

Overhead Map and Latent-Factor Models
• Consider these crazy goats trying to get some salt:
– Ignoring height gives poor approximation of goat location.

• But the “goat space” is basically a two-dimensional plane.
– Better k=2 approximation: define ‘W’ so that combinations give the plane.

www.momtastic.com/webecoist/2010/11/07/some-fine-dam-climbing-goats-scaling-steep-vertical-wall
https://www.quora.com/What-is-a-simplified-explanation-and-proof-of-the-Johnson-Lindenstrauss-lemma

PCA Geometry with d=2 and k =1

PCA Geometry with d=2 and k =1

PCA Geometry with d=2 and k =1

PCA Geometry with d=2 and k =1

PCA Geometry with d=3 and k=2.
• With d=3, PCA (k=1) finds line minimizing squared distance to xi.
• With d=3, PCA (k=2) finds plane minimizing squared distance to xi.

http://www.nlpca.org/fig_pca_principal_component_analysis.png

Summary
• Latent-factor models:
– Try to learn a low-dimensional matrix Z from training examples X.
– Usually, the zi are “part weights” for “parts” wc.
– Useful for dimensionality reduction, visualization, factor discovery, etc.

• Principal component analysis:
– Writes each training examples as linear combination of parts.

• We learn both the “parts” ‘W’ and the “features” Z.
– We can view ‘W’ as best lower-dim. hyper-plane (a k-dim. subspace in Rd).
– We can view ‘Z’ as the coordinates in the lower-dimensional hyper-plane.

• Next time: PCA in 4 lines of code.

