
CPSC 340:
Machine Learning and Data Mining

Kernel Trick



Last Time: Feature Engineering
• We discussed feature engineering:
– Designing a set of features to achieve good performance on a problem.

• We discussed various issues:
– Feature aggregation/discretization to address coupon counting.
– Feature scaling to address features of different scales.
– Non-linear transforms to make relationships more linear.

• We started discussing feature engineering on text data:
– Universal representation, Bag of words, n-gram (capture local contex), 

Part-of-speech features
– Personalized features



Part 3 Key Ideas: Linear Models, Least Squares
• Focus of Part 3 is linear models:
– Supervised learning where prediction is linear combination of features:

• Regression:
– Target yi is numerical, testing ( !𝑦i == yi) doesn’t make sense.

• Squared error:

– Can find optimal ‘w’ by solving “normal equations”.



Part 3 Key Ideas: Change of Basis, Gradient Descent

• Change of basis: replaces features xi with non-linear transforms zi:
– Add a bias variable (feature that is always one).
– Polynomial basis.
– Other basis functions (logarithms, trigonometric functions, etc.).

• For large ‘d’ we often use gradient descent:
– Iterations only cost O(nd).
– Converges to a critical point of a smooth function.
– For convex functions, it finds a global optimum.



Part 3 Key Ideas: Error Functions, Smoothing
• Error functions:
• Squared error is sensitive to outliers.
• Absolute (L1) error and Huber error are more robust to outliers.
• Brittle (L∞) error is more sensitive to outliers.

• L1 and L∞ error functions are convex but non-differentiable:
• Finding ‘w’ minimizing these errors is harder than squared error.

• We can approximate these with differentiable functions:
• L1 can be approximated with Huber.
• L∞ can be approximated with log-sum-exp.

• With these smooth (convex) approximations, 
we can find global optimum with gradient descent.



Part 3 Key Ideas: Regularization
• L0-regularization (AIC, BIC):
– Adds penalty on the number of non-zeros to select features (non-convex, 

hard to optimize).

• L2-regularization (ridge regression):
– Adding penalty on the L2-norm of ‘w’ to decrease overfitting (unique 

solution).

• L1-regularization (LASSO):
– Adding penalty on the L1-norm decreases overfitting and selects features.



Support Vector Machines for Non-Separable
• Can we use linear models for data that is not close to separable?

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes



Support Vector Machines for Non-Separable
• Can we use linear models for data that is not close to separable?
– It may be separable under non-linear transform (or closer to separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes



Support Vector Machines for Non-Separable
• Can we use linear models for data that is not close to separable?
– It may be separable under change of basis (or closer to separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes



Support Vector Machines for Non-Separable
• Can we use linear models for data that is not close to separable?
– It may be separable under change of basis (or closer to separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes



Multi-Dimensional Polynomial Basis
• Recall fitting polynomials when we only have 1 feature:

• We can fit these models using a change of basis:

• How can we do this when we have a lot of features?



Multi-Dimensional Polynomial Basis
• Polynomial basis for d=2 and p=2:

• With d=4 and p=3, the polynomial basis would include:
– Bias variable and the xij: 1, xi1, xi2, xi3, xi4.
– The xij squared and cubed: (xi1)2, (xi2)2, (xi3)2, (xi4)2, (xi1)3, (xi2)3, (xi3)3, (xi4)3.
– Two-term interactions: xi1xi2, xi1xi3, xi1xi4, xi2xi3, xi2xi4, xi3xi4.
– Cubic interactions: xi1xi2xi3, xi2xi3xi4, xi1xi3,xi4, xi1xi2xi4,

xi12xi2, xi12xi3, xi12xi4, xi1xi22, xi22xi3, xi22xi4, xi1xi32, xi2xi32,xi32xi4, xi1xi42, xi2xi42, xi3xi42.



Kernel Trick
• If we go to degree p=5, we’ll have O(d5) quintic terms:

• For large ‘d’ and ‘p’, storing a polynomial basis is intractable!
– ‘Z’ has k=O(dp) columns, so it does not fit in memory.

• Could try to search for a good subset of these.
– “Hierarchical forward selection” (bonus).

• Alternating, you can use all of them with the “kernel trick”.
– For special case of L2-regularized linear models.



How can you use an exponential-sized basis?
• Which of these two expressions would you rather compute?

– Expressions are equal, but left way costs O(p) while right costs O(1).

• Which of these two expressions would you rather compute?

– Expressions are equal, but left way has infinite terms and right costs O(1).

• Can we add weights to the terms in sum, and use these tricks?



The “Other” Normal Equations
• Recall the L2-regularized least squares objective with basis ‘Z’:

• We showed that the minimum is given by

(in practice you still solve the linear system, since inverse is less numerically unstable – see CPSC 302)

• With some work (bonus slide), this can equivalently be written as:

• This is faster if n << k:
– After forming ‘Z’, cost is O(n2k + n3) instead of O(nk2 + k3).
– But for the polynomial basis, this is still too slow since k = O(dp).



The “Other” Normal Equations
• With the “other” normal equations we have
• Given test data !𝑋, predict #𝑦 by forming !𝑍 and then using:

• Notice that if we can from K and !𝐾 then we do not need Z and !𝑍. 
• Key idea behind “kernel trick” for certain bases (like polynomials):

– We can efficiently compute K and !𝐾 even though forming Z and #𝑍 is intractable.
• In the same way we can compute (x+1)9 instead of x9 + 9x8 + 36x7 + 84x6…



Gram Matrix
• The matrix K = ZZT is called the Gram matrix K.

• K contains the dot products between all training examples.
– Similar to ‘Z’ in RBFs, but using dot product as “similarity” instead of distance.



Gram Matrix
• The matrix #𝐾 = %𝑍ZT has dot products between train and test examples:

• Kernel function: k(xi, xj) = zi
Tzj.

– Computes dot product in basis (ziTzj) using original features xi and xj.



The Kernel Trick



The Kernel Trick



Linear Regression vs. Kernel Regression



Degenerate Example: “Linear Kernel”
• Consider two examples xi and xj for a 2-dimensional dataset:

• As an example kernel, the “linear kernel” just uses original features:

• In this case the inner product zi
Tzj is k(xi,xj) = xi

Txj:

– But in this case model is still a linear function of original features.



Example: Degree-2 Kernel
• Consider two examples xi and xj for a 2-dimensional dataset:

• Now consider a particular degree-2 basis:

• In this case the inner product zi
Tzj is k(xi,xj) = (xi

Txj)2:



Polynomial Kernel with Higher Degrees
• Let’s add a bias and linear terms to our degree-2 basis:

• In this case the inner product zi
Tzj is k(xi,xj) = (1 + xi

Txj)2:



Polynomial Kernel with Higher Degrees
• To get all degree-4 “monomials” I can use:

• To also get lower-order terms use k(xi,xj) = (1 + xi
Txj)4

• The general degree-p polynomial kernel function:

– Works for any number of features ‘d’.
– But cost of computing one k(xi,xj) is O(d) instead of O(dp) to compute zi

Tzj.
– Take-home message: I can compute dot-products without the features.



Kernel Trick with Polynomials
• Using polynomial basis of degree ‘p’ with the kernel trick:
– Compute K and #𝐾 using:

– Make predictions using:

• Training cost is only O(n2d + n3), despite using k=O(dp) features.
– We can form ‘K’ in O(n2d), and we need to “invert” an ‘n x n’ matrix.
– Testing cost is only O(ndt), cost to form #𝐾.



Motivation: Finding Gold
• Kernel methods first came from mining engineering (“Kriging”):
– Mining company wants to find gold.
– Drill holes, measure gold content.
– Build a kernel regression model (typically use RBF kernels).

http://www.bisolutions.us/A-Brief-Introduction-to-Spatial-Interpolation.php



Kernel Trick for Non-Vector Data
• Consider data that doesn’t look like this:

• But instead looks like this:

• We can interpret k(xi,xj) as a “similarity” between objects xi and xj.
– We don’t need features if we can compute “similarity” between objects.
– Kernel trick lets us fit regression models without explicit features.
– There are “string kernels”, “image kernels”, “graph kernels”, and so on.



Kernel Trick for Non-Vector Data
• Recent list of types of data where people have defined kernels:

• Bonus slide overviews a particular “string” kernel.
https://arxiv.org/pdf/1802.04784.pdf



Valid Kernels
• What kernel functions k(xi,xj) can we use?

• Kernel ‘k’ must be an inner product in some space:
– There must exist a mapping from the xi to some zi such that k(xi,xj) = zi

Tzj.

• It can be hard to show that a function satisfies this.
– Infinite-dimensional eigenfunction problem.

• But like convex functions, there are some simple rules for 
constructing “valid” kernels from other valid kernels (bonus slide).



Kernel Trick for Other Methods
• Besides L2-regularized least squares, when can we use kernels?
– We can compute Euclidean distance with kernels:

– All of our distance-based methods have kernel versions:
• Kernel k-nearest neighbours.
• Kernel clustering k-means (allows non-convex clusters)
• Kernel density-based clustering.
• Kernel hierarchical clustering.
• Kernel distance-based outlier detection.
• Kernel “Amazon Product Recommendation”.



Kernel Trick for Other Methods
• Besides L2-regularized least squares, when can we use kernels?
– “Representer theorems” (bonus slide) have shown that

any L2-regularized linear model can be kernelized (see bonus):
• Kernel robust regression with L2-regularization.
• Kernel brittle regression with L2-regularization.
• Kernel hinge loss (SVM) or logistic loss with L2-regularization.

• Kernel multi-class SVM or multi-class logistic
with L2-regularization.



Logistic Regression with Kernels



Summary
• High-dimensional bases allows us to separate non-separable data.
• “Other” normal equations are faster when n < d.
• Kernel trick allows us to use high-dimensional bases efficiently.
– Write model to only depend on inner products between features vectors.

• Kernels let us use similarity between objects, rather than features.
– Allows some exponential-sized feature sets.

• Next time: 
– How do we train on all of Gmail?



An Infinite-Dimensional Basis?
• Suppose d=1 and I want to use this infinite set of features (d = ∞):

• The kernel function has a simple form:

• For these features, even though d=∞, cost of kernel is O(1).



Gaussian-RBF Kernel
• Previous slide is a special case of the Gaussian RBF kernel:

– Where we have introduced a variance hyper-parameter 𝜎2.
– This is the most popular kernel function.

• Same formula as Gaussian RBF features, but not equivalent:
– Before we used Gaussian RBFs as a set of ‘n’ features.
– Now we are using Gaussian RBFs as a dot product (for infinite features).

• In practice, Gaussian RBFs as features or as kernels gives similar performance.



Feature Selection Hierarchy
• Consider a linear models with higher-order terms,

• The number of higher-order terms may be too large.
– Can’t even compute them all.
– We need to somehow decide which terms we’ll even consider.

• Consider the following hierarchical constraint:
– You only allow w12 ≠ 0 if w1 ≠ 0 and w2 ≠ 0.
– “Only consider feature interaction if you are using both features already.”



Hierarchical Forward Selection
• Hierarchical Forward Selection:
– Usual forward selection, but consider interaction terms obeying hierarchy. 
– Only consider w12 ≠ 0 once w1 ≠ 0 and w2 ≠ 0.
– Only allow w123 ≠  0 once w12 ≠ 0 and w13 ≠ 0 and w23 ≠ 0.
– Only allow w1234 ≠ 0 once all threeway interactions are present.

http://arxiv.org/pdf/1109.2397v2.pdf





Why is inner product a similarity?
• It seems weird to think of the inner-product as a similarity.
• But consider this decomposition of squared Euclidean distance:

• If all training examples have the same norm, then minimizing Euclidean 
distance is equivalent to maximizing inner product.
– So “high similarity” according to inner product is like “small Euclidean distance”.
– The only difference is that the inner product is biased by the norms of the 

training examples.
– Some people explicitly normalize the xi by setting xi = (1/||xi||)xi, so that inner 

products act like the negation of Euclidean distances.
• E.g., Amazon product recommendation.





A String Kernel
• A classic “string kernel”:

– We want to compute k(“cat”, “cart”).
– Find all common subsequences: ‘c’, ‘a’, ‘t’, ‘ca’, ‘at’, ‘ct’, ‘cat’.
– Weight them by total length in original strings:

• ‘c’ has length (1,1), ‘ca’ has lengths (2,2), ‘ct’ has lengths (3,4), and so on.
– Add up the weighted lengths of common subsequences to get a similarity:

where γ is a hyper-parameter controlling influence of length.

• Corresponds to exponential feature set (counts/lengths of all subsequences).
– But kernel can be computed in polynomial time by dynamic programming.

• Many variations exist.







Kernel Trick for Other Methods
• Besides L2-regularized least squares, when can we use kernels?
– “Representer theorems have shown that

any L2-regularized linear model can be kernelized:



Kernel Trick for Other Methods
• Besides L2-regularized least squares, when can we use kernels?
– “Representer theorems” have shown that

any L2-regularized linear model can be kernelized.

– Linear models without regularization fit with gradient descent.
• If you starting at v=0 or with any other value in span of rows of ‘Z’.


