CPSC 340:
Machine Learning and Data Mining

Last Time: Feature Engineering

 We discussed feature engineering:

— Designing a set of features to achieve good performance on a problem.

* We discussed various issues:
— Feature aggregation/discretization to address coupon counting.
— Feature scaling to address features of different scales.
— Non-linear transforms to make relationships more linear.

* We started discussing feature engineering on text data:

— Universal representation, Bag of words, n-gram (capture local contex),
Part-of-speech features

— Personalized features

Part 3 Key Ideas: Linear Models, Least Squares

e Focus of Part 3 is linear models:

— Supervised learning where prediction is linear combination of features:
\/i = Wl xil +W2xil t .- +WJK!J

. = wa,-

* Regression:
— Target vy, is numerical, testing (y, == y,) doesn’t make sense.
M

Good Tit Thet &095'\ 1
° . N '
Squared error: .;; (Jy, - \/‘)z o _}z ,/Xw"\///l

Cxactly foss ﬂfow)"\ qry ‘”om

— Can find optimal ‘w’ by solving “normal equations”.

Part 3 Key Ideas: Change of Basis, Gradient Descent

* Change of basis: replaces features x. with non-linear transforms z;:
— Add a bias variable (feature that is always one).
— Polynomial basis.
— Other basis functions (logarithms, trigonometric functions, etc.).

* For large ‘d’ we often use gradient descent:
— |terations only cost O(nd).
— Converges to a critical point of a smooth function.
— For convex functions, it finds a global optimum.

Part 3 Key Ideas: Error Functions, Smoothing

Error functions:

* Squared error is sensitive to outliers.
e Absolute (L,) error and Huber error are more robust to outliers.

 Brittle (L..) error is more sensitive to outliers.
L, and L, error functions are convex but non-differentiable:
* Finding ‘W’ minimizing these errors is harder than squared error.

We can approximate these with differentiable functions:
* |, can be approximated with Huber.
* L., can be approximated with log-sum-exp.

With these smooth (convex) approximations,
we can find global optimum with gradient descent.

Part 3 Key Ideas: Regularization

e LO-regularization (AIC, BIC):

— Adds penalty on the number of non-zeros to select features (non-convex,
hard to optimize).

_{*(w): N Xw‘y//z + ql/W//o
* |L2-regularization (ridge regression):

— Adding penalty on the L2-norm of ‘W’ to decrease overfitting (unique

solution). F(w) _ “)(W_yun.,, %“W/,’,l

e L1-regularization (LASSO):

— Adding penalty on the L1-norm decreases overfitting and selects features.

Flo)= 1= yl*+ A0

Support Vector Machines for Non-Separable

* Can we use linear models for data that is not close to separable?

Support Vector Machines for Non-Separable

* Can we use linear models for data that is not close to separable?

— It may be separable under non-linear transform (or closer to separable).

Xi2

4
‘Xi)
X X
X
X X
o X
5 X
S X
J X
<0
» - X X ‘2
’ |
ﬁ X Xiq

Support Vector Machines for Non-Separable

* Can we use linear models for data that is not close to separable?

— It may be separable under change of basis (or closer to separable).

2 2 P
Xi2 ‘Xi) yi: w, X, t AR
x A y v
X X X »
X X
X X N x X x
AN X
X X 5 J X ﬁ\ X o
J 9 J XI,)\X
) - \ QO X 8 .
% _J \.‘. » 7 J\
% 9 % ' > - Xil
ﬁ Xir iy

Support Vector Machines for Non-Separable

* Can we use linear models for data that is not close to separable?

— It may be separable under change of basis (or closer to separable)

2
Xiz ‘Xs) y W, X T+ w2 xiky ! ;X,,
x A y X
X X X «
X b4 X
X — X APx .
AN X
X / J X J\ X "
J
O D Xi) X
D Ay ¢ 5o\ Cx

X J \\ J J \ X 2
X g

X —L}’) Opl?l#\ﬂ \I‘X“x|1

X X Sf"lCC JC(/Z.SIM IDOMV]dar/ ,5 O~ T/‘f ‘IQN"\
O vle‘l VV]@XH |2+ \Aé i

Multi-Dimensional Polynomial Basis

* Recall fitting polynomials when we only have 1 feature:

A

* We can fit these models using a change of basis:

X

-

(02)
—095
|

-L/.J

'Z::

~102 (027
I -0S5 (-05)?
| (%

oy W

e How can we do this when we have a lot of features?

Multi-Dimensional Polynomial Basis

* Polynomial basis for d=2 and p=2:

02 053 102 gz (02)" (03)F Nw3)
X=| | o5 |—= 27 1 ge (R (g5)2 (DOS)
| ~05 -0l ,‘ Us ~or (0> (-on* COSICON I

* With d=4 and p=3, the polynomial basis would include:
— Bias variable and the x;: 1, X1, Xj5, Xi3, Xig-
— The x;; squared and cubed: (xi1)? (Xi2)? (Xia)% (%ia)?, (%i1)?, (Xi2)3, (Xi3)3, (Xia)?.
— Two-term interactions: X;;Xi,, Xi1Xi3, Xi1Xia, Xi2Xi3, Xi2Xia, Xi3Xiz-

— Cubic interactions: Xi1Xi»X:3, Xi>XisXia, Xi1Xi3,Xiz, Xi1Xi2Xi,
Xir2Xin, Xi1ZXon, Xi12Xn, Xi1XinZ) Xin2Xin, XinZXin, Xi1XizZ, XioXiaZ) Xin2Xiny Xin Xin2, XinXin2, XiaXis2
ATV AT AT T AEAT N REEAT VY EEATN EAY AN AT ERAT T AEAT P EA VY EEATH RATIC T EEAT Y LAY IC T EAYIC BEAN 1/ VEEATN RAT Y RV EEAT D LAN Y/ WV EEATIC ATV B

Kernel Trick

If we go to degree p=5, we’ll have O(d>) quintic terms:

5.4 Y y 3 203 7 3 2 g 4
Xu;h X'z7 Xil Y37.,,7)l,~,)(;,;7 Xl an7xu ’(357---7){3! Xid 7...7Xa.z7)(;1 Xag). e e .,))(u

For large ‘d” and ‘p’, storing a polynomial basis is intractable!
— ‘7" has k=0(dP) columns, so it does not fit in memory.

Could try to search for a good subset of these.
— “Hierarchical forward selection” (bonus).

Alternating, you can use all of them with the “kernel trick”.
— For special case of L2-regularized linear models.

How can you use an exponential-sized basis?

* Which of these two expressions would you rather compute?

)t D436, 7+ 9% D6x5 HI6x BB 926743+ o (1))

— Expressions are equal, but left way costs O(p) while right costs O(1).

* Which of these two expressions would you rather compute?

c.——""

L T A
— Expressions are equal, but left way has infinite terms and right costs O(1).

4
x4 4 By o of ¢

 Can we add weights to the terms in sum, and use these tricks?

The “Other” Normal Equations

Recall the L2-regularized least squares objective with basis ‘Z’:

(v ‘%HZV ‘\/”Z + %"\1”1
We showed that the minimum is given by
\/:(ZTZ"',/\I) / v
Kk x K

(in practice you still solve the linear system, since inverse is less numerically unstable — see CPSC 302)

With some work (bonus slide), this can equivalently be written as:
T -1
V= Z-T (ZZ' +)I) >/
I\)

. . . V
This is faster if n << k: nxn
— After forming ‘Z’, cost is O(n?k + n3) instead of O(nk? + k3).
— But for the polynomial basis, this is still too slow since k = O(dP).

The “Other” Normal Equations

~I
T T
* With the “other” normal equations we have v = V4 (ZZ + ;]I) y
* Given test data X, predict 9 by forming Z and then using:

B
=7 ZT(ZZT + ;U:)")’

J

K K
~/ - _ v

t>f1:él<~(U3’\<‘) LZu' = Ku
xn N x n x

e Notice that if we can from K and K then we do not need Z and Z.

* Key idea behind “kernel trick” for certain bases (like polynomials):

— We can efficiently compute K and K even though forming Z and Z is intractable.
* In the same way we can compute (x+1)° instead of x° + 9x8 + 36x” + 84x°...

Gram Matrix

* The matrix K=2Z"is called the Gram matrix K.

(e =) (1))
— I,
K: zz - :l 2, 2, - 2,
:7___))
o~ ""-2" L.d ~

T T 5"
2,2, 2, T aEN

T T o)
2,2, 2,2 """ 228,
- :‘l 1 . "
2,2, 05,---2"
ZY'\ \ “n "2 th,‘
\—/\/—N/ A

. h . °
* K contains the dot products between all training examples.
— Similar to ‘Z" in RBFs, but using dot product as “similarity” instead of distance.

Gram Matrix

« The matrix K = ZZ" has dot products between train and test examples:

Y-)
K=22"=

2‘ Zl e zh

—

\)

* Kernel function: k(x;, x;) = z;z,.
— Computes dot product in basis (z,'z)) using original features x; and x;.

The Kernel Trick

———

lo afrl\/ 'inear feyfl";-slom) 1 Oily need to k"wv K “Mc/ /l?/

VS@ X; +0 Fo/m Z[‘\ -

VSC X, j[b Farm % _—

¢ =

V

i
Co”),o \416 Z; ZJ

)

-7
SC’7L ku-—z'%)

>

Foa resdlt is nxn (o malter hou, /"’?“’ 2, is)

The Kernel Trick

———

lp qfrl\/ Imear feyﬂ";élom) I Ol'f/ need 1o Know K ound /?/

US@ X" ;‘/9 /] 2 > T
&~
u //7/(= /

,

= Peaia

/1

A/

Fal resdt 1s nxXn (f\o Mcfﬂef' hew /'/yf’ 2 iS)

Linear Regression vs. Kernel Regression

LIV\EGf RQ‘)N&S;O,\ ,’<€”\6 l nec\) ression
mm9 —_mmm\fj'
| fM basis Z ‘FNM X , FO”M \ner (Prko\cS |< 'Frvm X

2 mr)n‘/e é’/\/: (Z'IZ"'//)—Z)’/ (ZT‘/) ? COMrm',f (,("’ (K+ //U—)—' \/
KKx |

N on” Paramt Fric

;Oﬁ__g. T#Sfm 7’ »
1 ‘:O(W\ LO\S(S 2 FfOW‘ | Form \nNer pVDJuc*S ’< from X auJ X
2 (omwu\"e y Z 2 Com‘aude Y~ {%5&;,

@o“\ V‘N“\&JS W‘akt’ ﬂf 5‘_4—0‘»(r,\pJ;("i()‘V‘f.

|II

Degenerate Example: “Linear Kerne

* Consider two examples x; and x; for a 2-dimensional dataset:

Xi= (x‘-l7xaz>)I))‘)z)
* As an example kernel, the “linear kernel” just uses original features:
4 =()(u) xq) Z5* (A:JI)XJ.?)

* In this case the inner product z;'z; is k(x;,x;) = x;"x;:

7
. X‘

Z)
T

— But in this case model is st|II a linear function of original features.

‘__>.<——>N

Example: Degree-2 Kernel

* Consider two examples x; and x; for a 2-dimensional dataset:
Xi= (Xn)Xaz));))‘)2)
* Now consider a particular degree-z basis:
Gt (""zyﬁ "*""'27"*22) <= (% 215 52,%7)

* In this case the mner product 2,'z; is k(x;, %) = (x;';)2

J

2
Z‘ Z)- — Xil 31 (J_i Xi X I.Z>(‘)‘ xﬂ) T Xj? 32
2 2
= Xu 27(:1 Xia X5, X T XiaX52
2 .
— (Xu 3| Xi:szD) comr'efmj fhe $quare
Xi'x

()()()2 é’ A/O ﬂffci f\or 2, 7l‘3 COMrmfe 2’—’2'

N

Polynomial Kernel with Higher Degrees

* Let’s add a bias and linear terms to our degree-2 basis:
T
ci= [/ \ﬁxn ﬁxiz x"z \r-)(i/’('.()/-22]

* |n this case the inner product Z;'Z; Is k(x,,x) =(1+ xTx)

2 1
= ’ + :ZX,,XJ, + 2)(,2)2 Xl X/ +2X/ ’-2 Jl }2 +XIZ){)Z

el
ﬁ)‘o/j

:Ll @X;, \\3)(;2 x"'l Hy;/){sz X;z:z) D’(Jl

Polynomial Kernel with Higher Degrees

* To get all degree-4 “monomials” | can use:

k(x- x) < (X,j)(S)q

())

ETN valenT fo wsing o Z, with Werahm Versions oF X,‘,'7Xi/3)({]))(//2 X/',127X«’/"'23 Xz -
/) < -

4
* To also get lower-order terms use k(x;x;) = (1 + xiij)4
* The general degree-p polynomial kernel function:

k(X,‘7>(J'>: Cr+ X;7JS>()

— Works for any number of features ‘d’.
— But cost of computing one k(x; ;) is O(d) instead of O(dP) to compute z;'z,.
— Take-home message: | can compute dot-products without the features.

Kernel Trick with Polynomials

* Using polynomial basis of degree ‘p’ with the kernel trick:
— Compute K and K using:

Py =
=) ko= (% . iyt

— Make predictions using: iii’m,
>/ [((}(+§II> ’:Ku
trn o nx| \’7“:('(”1)"‘/

tx\
* Training cost is only O(n?d + n3), despite using k=O(dP) features.
— We can form ‘K’ in O(n?d), and we need to “invert” an ‘n x n’ matrix.

— Testing cost is only O(ndt), cost to form K.

Motivation: Finding Gold

e Kernel methods first came from mining engineering (“Kriging”):
— Mining company wants to find gold.
— Drill holes, measure gold content.
— Build a kernel regression model (typically use RBF kernels).

Input Process Output

.o Ordinary
. ‘ ﬁ

Kriging

Kernel Trick for Non-Vector Data

e Consider data that doesn’t look like this:

[0.5377 0.3188 3.5784 | [+1]
¥ 1.8339 —1.3077 2.7694 -1
~ | -2.2588 —0.4336 —1.3499|°> YT [—1
| 0.8622 0.3426 3.0349 | [+1]
* But instead looks like this:
[Do you want to go for a drink sometime? | (1]
J'achete du pain tous les jours. —1
X = : LY = :
Fais ce que tu veux. —1
| There are inner products between sentences? | +1

* We can interpret k(x;,x;) as a “similarity” between objects xi and x;.
— We don’t need features if we can compute “similarity” between objects.
— Kernel trick lets us fit regression models without explicit features.

— There are “string kernels”, “image kernels”, “graph kernels”, and so on.

’

Kernel Trick for Non-Vector Data

* Recent list of types of data where people have defined kernels:

trees (Collins & Dufty, 2001; Kashima & Koyanagi, 2002),
time series (Cuturi, 2011), strings (Lodhi et al., 2002), mix-
ture models, hidden Markov models or linear dynamical
systems (Jebara et al., 2004), sets (Haussler, 1999; Gartner
et al., 2002), fuzzy domains (Guevara et al., 2017), dis-
tributions (Hein & Bousquet, 2005; Martins et al., 2009;
Muandet et al., 2011), groups (Cuturi et al., 2005) such as
specific constructions on permutations (Jiao & Vert, 2016),
or graphs (Vishwanathan et al., 2010; Kondor & Pan, 2016).
* Bonus slide overviews a particular “string” kernel.

Valid Kernels

What kernel functions k(x;,x;) can we use?

Kernel ‘k” must be an inner product in some space:

— There must exist a mapping from the x; to some z; such that k(x;x;) = z'z;.

It can be hard to show that a function satisfies this.

— Infinite-dimensional eigenfunction problem.

But like convex functions, there are some simple rules for
constructing “valid” kernels from other valid kernels (bonus slide).

Kernel Trick for Other Methods

Besides L2-regularized least squares, when can we use kernels?

— We can compute Euclidean distance with kernels:
2 T — T ‘
“2; = 2)-“ = 2i'2i =1z z t (()(,)x) QF(X,)y> k(x ,y)

— All of our distance-based methods have kernel versions:
e Kernel k-nearest neighbours.
e Kernel clustering k-means (allows non-convex clusters)
* Kernel density-based clustering.
e Kernel hierarchical clustering.
* Kernel distance-based outlier detection.

 Kernel “Amazon Product Recommendation”.

Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized (see bonus):
Kernel robust regression with L2-regularization.

Kernel brittle regression with L2-regularization.

Kernel hinge loss (SVM) or logistic loss with L2-regularization.

W/’/‘\ o]oafficular)M///M@n "/a?’/on)

C an reJmce [Dfe(JiC‘/"OV\ (OS\/
b S

’rrom O(Y\C/-l) To 0(5\”(”)

Kernel multi-class SVM or multi-class logistic L/Vumé?r i
with L2-regularization.

support vectors.

Logistic Regression with Kernels

Linear Logistic Regression Kernel-Linear Logistic Regression

"{. "
Vsina linear Kewmel
f S Le Samlé ds US i“,

or "giﬁa’ Foatuye,

-1 -0.5 0.9 1 -1 -0.5 0 0.9 1

Summary

High-dimensional bases allows us to separate non-separable data.
“Other” normal equations are faster when n < d.
Kernel trick allows us to use high-dimensional bases efficiently.

— Write model to only depend on inner products between features vectors.

Kernels let us use similarity between objects, rather than features.

— Allows some exponential-sized feature sets.

Next time:

— How do we train on all of Gmail?

An Infinite-Dimensional Basis?

e Suppose d=1 and | want to use this infinite set of features (d = o0):

- | 4
"eyf(-X')[:l \'Tl FlT ’ 3/’(ﬁ?xi ‘\"'——5‘7’(;'(' ‘ ']
* The kernel function has a S|mple form:
k Oy xi) = 27,

l I 3 3 % 1.55 .
-€Kf(le>ex (l -\——'7“5 +d XXJ +g' XX +EtL‘X ¥'7+gg"") + .:)
-)
\
‘pxr()(iXJ>

= exp -%x, -—x t XX)
= exp —7(XI 5))

* For these features, even though d=0c0, cost of kernel is O(1).

Gaussian-RBF Kernel

* Previous slide is a special case of the Gaussian RBF kernel:

k(x x)= ex(“f'___.L“z)

202

— Where we have introduced a variance hyper-parameter o?.
— This is the most popular kernel function.

 Same formula as Gaussian RBF features, but not equivalent:
— Before we used Gaussian RBFs as a set of ‘n’ features.

— Now we are using Gaussian RBFs as a dot product (for infinite features).
* In practice, Gaussian RBFs as features or as kernels gives similar performance.

Feature Selection Hierarchy

* Consider a linear models with higher-order termes,

A
y'. < Wb 1 W, "u" v, ’(34 + "’3 X‘S & lvu/(;,f;z t W:; X, Xis-“‘l@xiz Xis + "V,B(n’q Xa;

* The number of higher-order terms may be too large.
— Can’t even compute them all.
— We need to somehow decide which terms we’ll even consider.

* Consider the following hierarchical constraint:

— You only allow wy, # 0 if w; # 0 and w, # 0.
— “Only consider feature interaction if you are using both features already.”

Hierarchical Forward Selection

* Hierarchical Forward Selection:
— Usual forward selection, but consider interaction terms obeying hierarchy.

— Only consider wy, # 0 once w; # 0 and w, # 0.
— Only allow wy,5 # 0 once wy, # 0 and w5 # 0 and w,5 # 0.
— Only allow wy,5, # 0 once all threeway interactions are present.

y I e e
C123 Y (12 ,,’fu}‘:_‘;-s} 123 %

124)

!
“"‘-;_ "A »,’ .‘-'_.-‘ ’-;__\ i
Ak T

\-'_‘;‘_--” \1*3 '/

Fig 9: Power set of the set {1,.... 4}: in blue, an authorized set of selected subsets.
In red, an example of a group used within the norm (a subset and all of its

descendants in the DAG).

Bonus Slide: Equivalent Form of Ridge Regression

Note that X and Y are the same on the left and right side, so we only need to show that
(XTX + A 7'XT = XT(XXT 42D, (1)
A version of the matrix inversion lemma (Equation 4.107 in MLAPP) is
(E-FH'G)'FH '=FE 'F(H-GE 'F) .

Since matrix addition is commutative and multiplying by the identity matrix does nothing, we can re-write
the left side of (1) as

(XTXAAD)TIXT = (A4 XT X)X = A4 XTIX) XY = WM =-XT(-DX) 7' XT = - A\ =-XT(-DX) ' XT(-D)
Now apply the matrix inversion with £ = X (so E~' = (§) 1), F = X", H = —I (so H™' = —I too), and
G=X:

. — P N 1\ vy
~(\I = X" (=DX) "' X" (=1) = (X" (-1 - X (X) xT)-1,

Now use that (1/a)A~" = (aA)™!, to push the (=1/)) inside the sum as —),

:

T
~(IXT (-1 - X (,\

) XYV = XTOT+ XXT) ' = XT(XXT 4 A1),

Why is inner product a similarity?

* |t seems weird to think of the inner-product as a similarity.
* But consider this decomposition of squared Euclidean distance:

(

Ll ;112 = £ el = x g+ 1y 02

* If all training examples have the same norm, then minimizing Euclidean
distance is equivalent to maximizing inner product.

— So “high similarity” according to inner product is like “small Euclidean distance”.

— The only difference is that the inner product is biased by the norms of the
training examples.

— Some people explicitly normalize the x, by setting x, = (1/] | x;| |)x,, so that inner
products act like the negation of Euclidean distances.
* E.g., Amazon product recommendation.

B question stop following

Why RBF-kernel not the same as RBF-basis?

| do not quite understand the two statements in red box? | think with k as defined that way, it is just the g(||z; — ;)
as we saw in the last lecture of RBF basis? Why they are not equivalent? What does "equivalent” here mean?

Also, why now "we are using them as inner product"? |s it because we now regard k(xi, wj) as the inner product of 2;
and z;, which are some magical transformation of x; and x;? (Like k(:ci, :cj) = (1 + LE,LT:Bj)p is the inner product of z;
and z;, which are polynomial transformation of x; and x;)?

"',” Chenliang Zhou ® s months ago Oh so is my following reasoning correct?:
D "k

Ve A
Let Z and Z be as defined in lecture 22a.

In Gaussian RBF basis, § = Z(ZTZ + M) 1 ZTy = ZZT(ZZT + \I)1y.

In Gaussian RBF kernel, we have y = I~{(K + M)~y where where K and K are those 2

horrible matrices for Gaussian RBF kernels. Since they are the same formula, K = Z and K = Z SO
g = Z(Z+ M) y.

So Gaussian RBF basis and Gaussian RBF kernel are different because in general,

ZZT(ZZT + XI)~!(for G-RBF basis) # Z(Z + A\I)~!(for G-RBF kernel).

A String Kernel

e Aclassic “string kernel”:
— We want to compute k(“cat”, “cart”).

(7 () (

— Find all common subsequences: ‘c’, ‘@’, ‘t/, ‘ca’, ‘at’, ‘ct’, ‘cat’.

— Weight them by total length in original strings:
e ‘¢’ haslength (1,1), ‘ca’ has lengths (2,2), ‘ct’ has lengths (3,4), and so on.
— Add up the weighted lengths of common subsequences to get a similarity:

k(“cat”,“cart') _ ’)/1’71 +,Y1,Y1 +,Yl,yl +'72’72+72'73 +’73’74+73’Y47
M e e N e N
‘c’ ‘a’ ‘t’ ‘ca’ ‘at’ ‘ct’ ‘cat’

where y is a hyper-parameter controlling influence of length.

* Corresponds to exponential feature set (counts/lengths of all subsequences).
— But kernel can be computed in polynomial time by dynamic programming.

* Many variations exist.

Constructing Valid Kernels

o If ki(zi,z;) and ka(x;, x;) are valid kernels, then the following are valid kernels:

o ki(op(ws), p(x5)).
o aky(x;,x;)+ Bka(wi,x;) fora>0and g > 0.

o} kl(iz.ij)kQ(Lz,LJ)
o O(xi)ky (i, x5)p(x;).
o exp(ki(x,x4)).
e Example: Gaussian-RBF kernel:

2
Ty — Ty
k(xi,rj) = exp (—” i 7)

o2

2 / \ 2
= exp (— ||$7’2”) exp | — mT:U] exp (— H%QH) :
o o

~ qs?;) - \ >0 valld/ ~ ¢F:;) -

NG /

exp(valld)

Representer Theorem
Consider linear model differentiable with losses f; and L2-regularization,
. A
argmin » fi(w"x;) + §||w||2-
weRd .
1=1

Setting the gradient equal to zero we get
n
0= Z flwlzy)z; + \w.
i=1

So any solution w™* can written as a linear combination of features z;,

n

* 1 - *
w' = —+ Y A) =)z
1=1 1=1
= X7,

This is called a representer theorem (true under much more general conditions).

Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems have shown that
any L2-regularized linear model can be kernelized:

-IF I(’,F\fhl) Can l)ﬁ wrlHM n 7'/)-(‘fo/m Vm,y) ﬁfzv)-[.ﬂ//v//.? ‘E/Y&)n,,e Z
’“w,n W\Je/ W‘Ql\}\ (ova Tlons (Nﬂ)NﬂvJ’w ‘“\(20/{,\,\”) (\\

w ¢ (an ve~ UDMamt?LfPlze N f:ermj (DF V- Z(L

S’v'mg V"”W ‘F(ZZ “)4 g“ ZZ =

Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” have shown that
any L2-regularized linear model can be kernelized.

— Linear models without regularization fit with gradient descent.

* If you starting at v=0 or with any other value in span of rows of Z’.

Therations of yradint”_descent on F(Zv> can be wpillen as \/:lek
Wk'tc[n ’etS US fb“‘f’afaMf,TQ/ize as ?(ZZTM)

At Ef/ Tme o \/VO\A/J wse ZVV:Z:ET(A :/?u

X'),?

