CPSC 340:
Machine Learning and Data Mining



Last Time: Feature Engineering

 We discussed feature engineering:

— Designing a set of features to achieve good performance on a problem.

* We discussed various issues:
— Feature aggregation/discretization to address coupon counting.
— Feature scaling to address features of different scales.
— Non-linear transforms to make relationships more linear.

* We started discussing feature engineering on text data:

— Universal representation, Bag of words, n-gram (capture local contex),
Part-of-speech features

— Personalized features



Part 3 Key Ideas: Linear Models, Least Squares

e Focus of Part 3 is linear models:

— Supervised learning where prediction is linear combination of features:
\/i = Wl xil +W2xil t .- +WJK!J

. = wa,-

* Regression:
— Target vy, is numerical, testing (y, == y,) doesn’t make sense.
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— Can find optimal ‘w’ by solving “normal equations”.



Part 3 Key Ideas: Change of Basis, Gradient Descent

* Change of basis: replaces features x. with non-linear transforms z;:
— Add a bias variable (feature that is always one).
— Polynomial basis.
— Other basis functions (logarithms, trigonometric functions, etc.).

* For large ‘d’ we often use gradient descent:
— |terations only cost O(nd).
— Converges to a critical point of a smooth function.
— For convex functions, it finds a global optimum.



Part 3 Key Ideas: Error Functions, Smoothing

Error functions:

* Squared error is sensitive to outliers.
e Absolute (L,) error and Huber error are more robust to outliers.

 Brittle (L..) error is more sensitive to outliers.
L, and L, error functions are convex but non-differentiable:
* Finding ‘W’ minimizing these errors is harder than squared error.

We can approximate these with differentiable functions:
* |, can be approximated with Huber.
* L., can be approximated with log-sum-exp.

With these smooth (convex) approximations,
we can find global optimum with gradient descent.



Part 3 Key Ideas: Regularization

e LO-regularization (AIC, BIC):

— Adds penalty on the number of non-zeros to select features (non-convex,
hard to optimize).

_{*(w): N Xw‘y//z + ql/W//o
* |L2-regularization (ridge regression):

— Adding penalty on the L2-norm of ‘W’ to decrease overfitting (unique

solution). F(w) _ “)(W_yun.,, %“W/,’,l

e L1-regularization (LASSO):

— Adding penalty on the L1-norm decreases overfitting and selects features.

Flo)= 1= yl*+ A0



Support Vector Machines for Non-Separable

* Can we use linear models for data that is not close to separable?




Support Vector Machines for Non-Separable

* Can we use linear models for data that is not close to separable?

— It may be separable under non-linear transform (or closer to separable).
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Support Vector Machines for Non-Separable

* Can we use linear models for data that is not close to separable?

— It may be separable under change of basis (or closer to separable).
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Support Vector Machines for Non-Separable

* Can we use linear models for data that is not close to separable?

— It may be separable under change of basis (or closer to separable)
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Multi-Dimensional Polynomial Basis

* Recall fitting polynomials when we only have 1 feature:

A

* We can fit these models using a change of basis:
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e How can we do this when we have a lot of features?



Multi-Dimensional Polynomial Basis

* Polynomial basis for d=2 and p=2:
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* With d=4 and p=3, the polynomial basis would include:
— Bias variable and the x;: 1, X1, Xj5, Xi3, Xig-
— The x;; squared and cubed: (xi1)? (Xi2)? (Xia)% (%ia)?, (%i1)?, (Xi2)3, (Xi3)3, (Xia)?.
— Two-term interactions: X;;Xi,, Xi1Xi3, Xi1Xia, Xi2Xi3, Xi2Xia, Xi3Xiz-

— Cubic interactions: Xi1Xi»X:3, Xi>XisXia, Xi1Xi3,Xiz, Xi1Xi2Xi,
Xir2Xin, Xi1ZXon, Xi12Xn, Xi1XinZ) Xin2Xin, XinZXin, Xi1XizZ, XioXiaZ ) Xin2Xiny Xin Xin2, XinXin2, XiaXis2
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Kernel Trick

If we go to degree p=5, we’ll have O(d>) quintic terms:
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For large ‘d” and ‘p’, storing a polynomial basis is intractable!
— ‘7" has k=0(dP) columns, so it does not fit in memory.

Could try to search for a good subset of these.
— “Hierarchical forward selection” (bonus).

Alternating, you can use all of them with the “kernel trick”.
— For special case of L2-regularized linear models.



How can you use an exponential-sized basis?

* Which of these two expressions would you rather compute?

)t D436, 7+ 9% D6x5 HI6x BB 926743+ o (1))

— Expressions are equal, but left way costs O(p) while right costs O(1).

* Which of these two expressions would you rather compute?
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— Expressions are equal, but left way has infinite terms and right costs O(1).
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 Can we add weights to the terms in sum, and use these tricks?



The “Other” Normal Equations

Recall the L2-regularized least squares objective with basis ‘Z’:

(v ‘%HZV ‘\/”Z + %"\1”1
We showed that the minimum is given by
\/:(ZTZ"',/\I) / v
Kk x K

(in practice you still solve the linear system, since inverse is less numerically unstable — see CPSC 302)

With some work (bonus slide), this can equivalently be written as:
T -1
V= Z-T (ZZ' +)I) >/
I\ )

. . . V
This is faster if n << k: nxn
— After forming ‘Z’, cost is O(n?k + n3) instead of O(nk? + k3).
— But for the polynomial basis, this is still too slow since k = O(dP).




The “Other” Normal Equations
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* With the “other” normal equations we have v = V4 (ZZ + ;]I) y
* Given test data X, predict 9 by forming Z and then using:
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e Notice that if we can from K and K then we do not need Z and Z.

* Key idea behind “kernel trick” for certain bases (like polynomials):

— We can efficiently compute K and K even though forming Z and Z is intractable.
* In the same way we can compute (x+1)° instead of x° + 9x8 + 36x” + 84x°...



Gram Matrix

* The matrix K=2Z"is called the Gram matrix K.
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* K contains the dot products between all training examples.
— Similar to ‘Z" in RBFs, but using dot product as “similarity” instead of distance.



Gram Matrix

« The matrix K = ZZ" has dot products between train and test examples:
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* Kernel function: k(x;, x;) = z;z,.
— Computes dot product in basis (z,'z)) using original features x; and x;.



The Kernel Trick
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The Kernel Trick
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Linear Regression vs. Kernel Regression
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Degenerate Example: “Linear Kerne

* Consider two examples x; and x; for a 2-dimensional dataset:

Xi= (x‘-l7xaz> )I))‘)z)
* As an example kernel, the “linear kernel” just uses original features:
4 =()(u) xq) Z5* (A:JI)XJ.?)

* In this case the inner product z;'z; is k(x;,x;) = x;"x;:
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— But in this case model is st|II a linear function of original features.
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Example: Degree-2 Kernel

* Consider two examples x; and x; for a 2-dimensional dataset:
Xi= (Xn)Xaz) );))‘)2)
* Now consider a particular degree-z basis:
Gt (""zyﬁ "*""'27"*22) <= (% 215 52,%7)

* In this case the mner product 2,'z; is k(x;, %) = (x;'; )2
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Polynomial Kernel with Higher Degrees

* Let’s add a bias and linear terms to our degree-2 basis:
T
ci= [/ \ﬁxn ﬁxiz x"z \r-)(i/’('.( )/-22]

* |n this case the inner product Z;'Z; Is k(x,,x) =(1+ xTx)
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Polynomial Kernel with Higher Degrees

* To get all degree-4 “monomials” | can use:

k(x- x) < (X,j)(S)q
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* To also get lower-order terms use k(x;x;) = (1 + xiij)4
* The general degree-p polynomial kernel function:

k(X,‘7>(J'>: Cr+ X;7JS>()

— Works for any number of features ‘d’.
— But cost of computing one k(x; ;) is O(d) instead of O(dP) to compute z;'z,.
— Take-home message: | can compute dot-products without the features.



Kernel Trick with Polynomials

* Using polynomial basis of degree ‘p’ with the kernel trick:
— Compute K and K using:

Py =
=) ko= (% . iyt

— Make predictions using: iii’m,
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* Training cost is only O(n?d + n3), despite using k=O(dP) features.
— We can form ‘K’ in O(n?d), and we need to “invert” an ‘n x n’ matrix.

— Testing cost is only O(ndt), cost to form K.



Motivation: Finding Gold

e Kernel methods first came from mining engineering (“Kriging”):
— Mining company wants to find gold.
— Drill holes, measure gold content.
— Build a kernel regression model (typically use RBF kernels).

Input Process Output

.o Ordinary
. ‘ ﬁ

Kriging




Kernel Trick for Non-Vector Data

e Consider data that doesn’t look like this:

[ 0.5377  0.3188  3.5784 | [+1]
¥ 1.8339 —1.3077 2.7694 -1
~ | -2.2588 —0.4336 —1.3499|°> YT [—1
| 0.8622 0.3426 3.0349 | [ +1 ]
* But instead looks like this:
[ Do you want to go for a drink sometime? | (1]
J'achete du pain tous les jours. —1
X = : LY = :
Fais ce que tu veux. —1
| There are inner products between sentences? | +1

* We can interpret k(x;,x;) as a “similarity” between objects xi and x;.
— We don’t need features if we can compute “similarity” between objects.
— Kernel trick lets us fit regression models without explicit features.

— There are “string kernels”, “image kernels”, “graph kernels”, and so on.

’



Kernel Trick for Non-Vector Data

* Recent list of types of data where people have defined kernels:

trees (Collins & Dufty, 2001; Kashima & Koyanagi, 2002),
time series (Cuturi, 2011), strings (Lodhi et al., 2002), mix-
ture models, hidden Markov models or linear dynamical
systems (Jebara et al., 2004), sets (Haussler, 1999; Gartner
et al., 2002), fuzzy domains (Guevara et al., 2017), dis-
tributions (Hein & Bousquet, 2005; Martins et al., 2009;
Muandet et al., 2011), groups (Cuturi et al., 2005) such as
specific constructions on permutations (Jiao & Vert, 2016),
or graphs (Vishwanathan et al., 2010; Kondor & Pan, 2016).
* Bonus slide overviews a particular “string” kernel.



Valid Kernels

What kernel functions k(x;,x;) can we use?

Kernel ‘k” must be an inner product in some space:

— There must exist a mapping from the x; to some z; such that k(x;x;) = z'z;.

It can be hard to show that a function satisfies this.

— Infinite-dimensional eigenfunction problem.

But like convex functions, there are some simple rules for
constructing “valid” kernels from other valid kernels (bonus slide).



Kernel Trick for Other Methods

Besides L2-regularized least squares, when can we use kernels?

— We can compute Euclidean distance with kernels:
2 T — T ‘
“2; = 2)-“ = 2i'2i =1z z t (()(,)x) QF(X,)y> k(x ,y)

— All of our distance-based methods have kernel versions:
e Kernel k-nearest neighbours.
e Kernel clustering k-means (allows non-convex clusters)
* Kernel density-based clustering.
e Kernel hierarchical clustering.
* Kernel distance-based outlier detection.

 Kernel “Amazon Product Recommendation”.



Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized (see bonus):
Kernel robust regression with L2-regularization.

Kernel brittle regression with L2-regularization.

Kernel hinge loss (SVM) or logistic loss with L2-regularization.
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with L2-regularization.

support vectors.



Logistic Regression with Kernels

Linear Logistic Regression Kernel-Linear Logistic Regression
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Summary

High-dimensional bases allows us to separate non-separable data.
“Other” normal equations are faster when n < d.
Kernel trick allows us to use high-dimensional bases efficiently.

— Write model to only depend on inner products between features vectors.

Kernels let us use similarity between objects, rather than features.

— Allows some exponential-sized feature sets.

Next time:

— How do we train on all of Gmail?



An Infinite-Dimensional Basis?

e Suppose d=1 and | want to use this infinite set of features (d = o0):

- | 4
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* The kernel function has a S|mple form:
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* For these features, even though d=0c0, cost of kernel is O(1).



Gaussian-RBF Kernel

* Previous slide is a special case of the Gaussian RBF kernel:

k(x x)= ex( “f'___.L“z)

202

— Where we have introduced a variance hyper-parameter o?.
— This is the most popular kernel function.

 Same formula as Gaussian RBF features, but not equivalent:
— Before we used Gaussian RBFs as a set of ‘n’ features.

— Now we are using Gaussian RBFs as a dot product (for infinite features).
* In practice, Gaussian RBFs as features or as kernels gives similar performance.



Feature Selection Hierarchy

* Consider a linear models with higher-order termes,

A
y'. < Wb 1 W, "u" v, ’(34 + "’3 X‘S & lvu/(;,f;z t W:; X, Xis-“‘l@xiz Xis + "V,B(n’q Xa;

* The number of higher-order terms may be too large.
— Can’t even compute them all.
— We need to somehow decide which terms we’ll even consider.

* Consider the following hierarchical constraint:

— You only allow wy, # 0 if w; # 0 and w, # 0.
— “Only consider feature interaction if you are using both features already.”



Hierarchical Forward Selection

* Hierarchical Forward Selection:
— Usual forward selection, but consider interaction terms obeying hierarchy.

— Only consider wy, # 0 once w; # 0 and w, # 0.
— Only allow wy,5 # 0 once wy, # 0 and w5 # 0 and w,5 # 0.
— Only allow wy,5, # 0 once all threeway interactions are present.
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Fig 9: Power set of the set {1,.... 4}: in blue, an authorized set of selected subsets.
In red, an example of a group used within the norm (a subset and all of its

descendants in the DAG).



Bonus Slide: Equivalent Form of Ridge Regression

Note that X and Y are the same on the left and right side, so we only need to show that
(XTX + A 7'XT = XT(XXT 42D, (1)
A version of the matrix inversion lemma (Equation 4.107 in MLAPP) is
(E-FH'G)'FH '=FE 'F(H-GE 'F) .

Since matrix addition is commutative and multiplying by the identity matrix does nothing, we can re-write
the left side of (1) as

(XTXAAD)TIXT = (A4 XT X)X = A4 XTIX) XY = WM =-XT(-DX) 7' XT = - A\ =-XT(-DX) ' XT(-D)
Now apply the matrix inversion with £ = X (so E~' = (§) 1), F = X", H = —I (so H™' = —I too), and
G=X:

. — P N 1\ vy
~(\I = X" (=DX) "' X" (=1) = (X" (-1 - X (X) xT)-1,

Now use that (1/a)A~" = (aA)™!, to push the (=1/)) inside the sum as —),

:

T
~(IXT (-1 - X (,\

) XYV = XTOT+ XXT) ' = XT(XXT 4 A1),



Why is inner product a similarity?

* |t seems weird to think of the inner-product as a similarity.
* But consider this decomposition of squared Euclidean distance:

(

Ll ;112 = £ el = x g+ 1y 02

* If all training examples have the same norm, then minimizing Euclidean
distance is equivalent to maximizing inner product.

— So “high similarity” according to inner product is like “small Euclidean distance”.

— The only difference is that the inner product is biased by the norms of the
training examples.

— Some people explicitly normalize the x, by setting x, = (1/] | x;| | )x,, so that inner
products act like the negation of Euclidean distances.
* E.g., Amazon product recommendation.



B question stop following

Why RBF-kernel not the same as RBF-basis?

| do not quite understand the two statements in red box? | think with k as defined that way, it is just the g(||z; — ;)
as we saw in the last lecture of RBF basis? Why they are not equivalent? What does "equivalent” here mean?

Also, why now "we are using them as inner product"? |s it because we now regard k(xi, wj) as the inner product of 2;
and z;, which are some magical transformation of x; and x;? (Like k(:ci, :cj) = (1 + LE,LT:Bj)p is the inner product of z;
and z;, which are polynomial transformation of x; and x;)?

"',” Chenliang Zhou ® s months ago Oh so is my following reasoning correct?:
D "k

Ve A
Let Z and Z be as defined in lecture 22a.

In Gaussian RBF basis, § = Z(ZTZ + M) 1 ZTy = ZZT(ZZT + \I)1y.

In Gaussian RBF kernel, we have y = I~{(K + M)~y where where K and K are those 2

horrible matrices for Gaussian RBF kernels. Since they are the same formula, K = Z and K = Z SO
g = Z(Z+ M) y.

So Gaussian RBF basis and Gaussian RBF kernel are different because in general,

ZZT(ZZT + XI)~!(for G-RBF basis) # Z(Z + A\I)~!(for G-RBF kernel).



A String Kernel

e Aclassic “string kernel”:
— We want to compute k(“cat”, “cart”).

(7 () (

— Find all common subsequences: ‘c’, ‘@’, ‘t/, ‘ca’, ‘at’, ‘ct’, ‘cat’.

— Weight them by total length in original strings:
e ‘¢’ haslength (1,1), ‘ca’ has lengths (2,2), ‘ct’ has lengths (3,4), and so on.
— Add up the weighted lengths of common subsequences to get a similarity:

k( “cat”,“cart') _ ’)/1’71 +,Y1,Y1 +,Yl,yl +'72’72+72'73 +’73’74+73’Y47
M e e N e N
‘c’ ‘a’ ‘t’ ‘ca’ ‘at’ ‘ct’ ‘cat’

where y is a hyper-parameter controlling influence of length.

* Corresponds to exponential feature set (counts/lengths of all subsequences).
— But kernel can be computed in polynomial time by dynamic programming.

* Many variations exist.



Constructing Valid Kernels

o If ki(zi,z;) and ka(x;, x;) are valid kernels, then the following are valid kernels:

o ki(op(ws), p(x5)).
o aky(x;,x;)+ Bka(wi,x;) fora>0and g > 0.

o} kl(iz.ij)kQ(Lz,LJ)
o O(xi)ky (i, x5)p(x;).
o exp(ki(x,x4)).
e Example: Gaussian-RBF kernel:

2
Ty — Ty
k(xi,rj) = exp (—” i 7 )

o2

2 / \ 2
= exp (— ||$7’2” ) exp | — mT:U] exp (— H%QH ) :
o o
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exp(valld)



Representer Theorem
Consider linear model differentiable with losses f; and L2-regularization,
. A
argmin »  fi(w"x;) + §||w||2-
weRd .
1=1

Setting the gradient equal to zero we get
n
0= Z flwlzy)z; + \w.
i=1

So any solution w™* can written as a linear combination of features z;,

n

* 1 - *
w' = —+ Y A ) =)z
1=1 1=1
= X7,

This is called a representer theorem (true under much more general conditions).



Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems have shown that
any L2-regularized linear model can be kernelized:
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Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” have shown that
any L2-regularized linear model can be kernelized.

— Linear models without regularization fit with gradient descent.

* If you starting at v=0 or with any other value in span of rows of Z’.

Therations of yradint”_descent on F(Zv> can be wpillen as \/:lek
Wk'tc[n ’etS US fb“‘f’afaMf,TQ/ize as ?(ZZTM)
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