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Last Time: Multi-Class Linear Classifiers
• We discussed multi-class classification: yi in {1,2,…,k}.
• One vs. all with +1/-1 binary classifier:
– Train weights wc separately to predict +1 for class ‘c’, -1 otherwise.

– Predict by taking ‘c’ maximizing class output oic = wc
Txi.

• Multi-class SVMs and multi-class logistic regression:
– Train the wc jointly to encourage maximum oic to be oi  .



Shape of Decision Boundaries
• Recall that a binary linear classifier splits space using a hyper-plane:

• Divides xi space into 2 “half-spaces”.



Shape of Decision Boundaries
• Multi-class linear classifier is intersection of these “half-spaces”:
– This divides the space into convex regions (like k-means):



Shape of Decision Boundaries
• Multi-class linear classifier is intersection of these “half-spaces”:
– Though regions could be non-convex with non-linear feature transforms:



Example Applications

https://academic.oup.com/bioinformatics/article/40/2/btae063/7601321?login=false



Next Topic: Probabilistic Outputs



Previously: Identifying Important E-mails
• Recall problem of identifying ‘important’ e-mails:

• We can do binary classification by taking sign of linear model:

– Convex loss functions (hinge/logistic loss) let us find an appropriate ‘w’.

• But what if we want a probabilistic classifier?
– Want a model of P(yi = “important” | xi) for use in decision theory.



Predictions vs. Probabilities
• With oi = wTxi, linear classifiers make prediction using sign(oi):

• For predictions, “sign” maps from oi to the elements {-1,+1}.
– If oi is positive we predict +1, if oi negative we predict -1.

• For probabilities, we want to map from oi to the range [0,1].
– If oi is very positive, we output a value close to +1 (confident yi=1).
– If oi is very negative, we output a value close to 0 (confident yi=-1).
– If oi is close to 0, we output a value close to 0.5 (classes equally likely).



• So we want a transformation of oi = wTxi that looks like this:

• The most common choice is the sigmoid function:

• Values of h(oi) match what we want:

Sigmoid Function



Probabilities for Linear Classifiers using Sigmoid 
• Using sigmoid function, we output probabilities for linear models using:

• Visualization for 2 features:
https://www.youtube.com/watch?v=Zc7ouSD0DEQ



Probabilities for Linear Classifiers using Sigmoid 
• Using sigmoid function, we output probabilities for linear models using:

• By rules of probability:

• We then use these for “probability that e-mail is important”.
• This may seem heuristic, but later we’ll see that:
– Minimizing logistic loss does “maximum likelihood estimation” in this model.



• We have thus far considered the binary case:.
– We start with an oi = wTxi in (-∞,∞).
– And we converted to probabilities in [0,1] using sigmoid(oi).

• Now consider outputting probabilities in the multi-class case:
– We have ℓ real numbers oic = wc

Txi in (-∞,∞).
– We want to convert to ℓ numbers in [0,1] that sum to 1.

Softmax Function: Multi-Class Probabilities 



• Most common way to convert to probabilities is with softmax:

– Taking exp(oic) makes it non-negative.

• To sum to one over value of s ‘c’, denominator sums over classes:

– So this gives a probability for each of the ‘ℓ’ possible values of ‘c’.
• Minimizing softmax loss does “maximum likelihood estimation” in this model.

Softmax Function: Multi-Class Probabilities 



Next Topic: Feature Engineering



Feature Engineering
• “…some machine learning projects succeed and some fail. What 

makes the difference? Easily the most important factor is the 
features used.”
– Pedro Domingos

• “Coming up with features is difficult, time-consuming, requires 
expert knowledge. "Applied machine learning" is basically feature 
engineering.”
– Andrew Ng



Feature Engineering
• Better features usually help more than a better model.

• Good features would ideally:
– Allow learning with few examples, be hard to overfit with many examples.
– Capture most important aspects of problem.
– Reflects invariances (generalize to new scenarios).

• There is a trade-off between simple and expressive features:
– With simple features overfitting risk is low, but accuracy might be low. 
– With complicated features accuracy can be high, but so is overfitting risk.



Feature Engineering
• The best features may be dependent on the model you use.

• For counting-based methods like naïve Bayes and decision trees:
– Need to address coupon collecting,  but separate relevant “groups”.

• For distance-based methods like KNN:
– Want different class labels to be “far”.

• For regression-based methods like linear regression:
– Want labels to have a linear dependency on features.



Discretization for Counting-Based Methods
• For counting-based methods:
– Discretization: turn continuous into discrete.

– Counting age “groups” could let us learn more quickly than exact ages.
• But we wouldn’t do this for a distance-based method.

Age

23
23
22
25
19
22

< 20 >= 20, < 25 >= 25

0 1 0
0 1 0
0 1 0
0 0 1
1 0 0
0 1 0



Standardization for Distance-Based Methods
• Consider features with different scales:

• Should we convert to some standard ‘unit’?
– It doesn’t matter for counting-based methods.

• It matters for distance-based methods:
• KNN will focus on large values more than small values.
• Often we “standardize” scales of different variables (e.g., convert everything to grams).
• Also need to worry about correlated features

Egg (#) Milk (mL) Fish (g) Pasta
(cups)

0 250 0 1
1 250 200 1
0 0 0 0.5
2 250 150 0



Non-Linear Transformations for Regression-Based

• Non-linear feature/label transforms can make things more linear:
– Polynomial, exponential/logarithm, sines/cosines, RBFs.

www.google.com/finance



Discussion of Feature Engineering
• The best feature transformations are application-dependent.
– It’s hard to give general advice.

• Advice: ask the domain experts.
– Often have idea of right discretization/standardization/transformation.

• If no domain expert, cross-validation will help.
– Or if you have lots of data, use deep learning methods from Part 5.

• Next: we’ll discuss features used for text/image applications.



Domain-Specific Transformations
• In some domains there are natural transformations to do:
– Fourier coefficients and spectrograms (sound data).
– Wavelets (image data).
– Convolutions (we’ll talk about these soon).

https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Spectrogram
https://en.wikipedia.org/wiki/Discrete_wavelet_transform



Digression: Linear Models with Binary Features
• What is the effect of a binary features on linear regression?

• Suppose we use a bag of words:
– With 3 words {“hello”, “Vicodin”, “340“} our model would be:

– If e-mail only has “hello” and “340” our prediction is:

• So having the binary feature ‘j’ increases !𝑦i by the fixed amount wj.
– Predictions are a bit like naïve Bayes where we combine features independently.
– But now we’re learning all wj together so this tends to work better.



Next Topic: Features for Text Data



Text Example 1: Language Identification
• Consider data that doesn’t look like this:

• But instead looks like this:

• How should we represent sentences using features?



A (Bad) Universal Representation
• Treat character in position ‘j’ of the sentence as a categorical feature.

• “fais ce que tu veux” => xi = [f a i s ‘’ c e ‘’ q u e ‘’ t u ‘’ v e u x .]

• “Pad” end of the sentence up to maximum #characters:
• “fais ce que tu veux” => xi = [f a i s ‘’ c e ‘’ q u e ‘’ t u ‘’ v e u x . γ γ γ γ γ γ γ γ …]

• Advantage: 
– No information is lost, KNN can eventually solve the problem.

• Disadvantage: throws out everything we know about language.
– Needs to learn that “veux” starting from any position indicates “French”.

• Doesn’t even use that sentences are made of words (this must be learned).
– High overfitting risk, you will need a lot of examples for this easy task.



Bag of Words Representation 
• Bag of words represents sentences/documents by word counts:

• Bag of words loses a ton of information/meaning:
– But it easily solves language identification problem

The International Conference on Machine Learning (ICML) is the 
leading international academic conference in machine learning

ICML International Conference Machine Learning Leading Academic

1 2 2 2 2 1 1

https://en.wikipedia.org/wiki/Academic_conference
https://en.wikipedia.org/wiki/Machine_learning


Universal Representation vs. Bag of Words

• Why is bag of words better than “string of characters” here?

– It needs less data because it captures invariances for the task:
• Most features give strong indication of one language or the other.
• It doesn’t matter where the French words appear.

– It overfits less because it throws away irrelevant information.
• Exact sequence of words isn’t particularly relevant here.



Text Example 2: Word Sense Disambiguation
• Consider the following two sentences:
– “The cat ran after the mouse.”
– “Move the mouse cursor to the File menu.”

• Word sense disambiguation (WSD): classify “meaning” of a word:
– A surprisingly difficult task.

• You can do ok with bag of words, but it will have problems:
– “Her mouse clicked on one cat video after another.” 
– “We saw the mouse run out from behind the computer.”
– “The mouse was gray.” (ambiguous without more context)



Bigrams and Trigrams
• A bigram is an ordered set of two words:
– Like “computer mouse” or “mouse ran”.

• A trigram is an ordered set of three words:
– Like “cat and mouse” or “clicked mouse on”.

• These give more context/meaning than bag of words:
– Includes neighbouring words as well as order of words.
– Trigrams are widely-used for various language tasks.

• General case is called n-gram.
– Unfortunately, coupon collecting becomes a problem with larger ‘n’.



Text Example 3: Part of Speech (POS) Tagging
• Consider problem of finding the verb in a sentence:
– “The 340 students jumped at the chance to hear about POS features.”

• Part of speech (POS) tagging is the problem of labeling all words.
– >40 common syntactic POS tags.
– Current systems have ~97% accuracy on standard (“clean”) test sets.
– You can achieve this by applying a “word-level” classifier to each word.

• That independently classifies each word with one of the 40 tags.

• What features of a word should we use for POS tagging?



POS Features
• Regularized multi-class logistic regression with these features gives ~97% accuracy:

– Categorical features whose domain is all words (“lexical” features):
• The word (e.g., “jumped” is usually a verb).
• The previous word (e.g., “he” hit vs. “a” hit).
• The previous previous word.
• The next word.
• The next next word.

– Categorical features whose domain is combinations of letters (“stem” features):
• Prefix of length 1 (“what letter does the word start with?”)
• Prefix of length 2.
• Prefix of length 3.
• Prefix of length 4 (“does it start with JUMP?”)
• Suffix of length 1.
• Suffix of length 2.
• Suffix of length 3 (“does it end in ING?”)
• Suffix of length 4.

– Binary features (“shape” features):
• Does word contain a number?
• Does word contain a capital?
• Does word contain a hyphen?

well-dressed

https://web.stanford.edu/~jurafsky/slp3/old_oct19/8.pdf



Ordinal Features
• Categorical features with an ordering are called ordinal features.

• If using decision trees, makes sense to replace with numbers.
– Captures ordering between the ratings.
– A rule like (rating ≥ 3) means (rating ≥ Good), which make sense.

Rating

Bad

Very Good

Good

Good

Very Bad

Good

Medium

Rating

2

5

4

4

1

4

3



Ordinal Features
• With linear models, “convert to number” assumes ratings are equally spaced.

– “Bad” and “Medium” distance is similar to “Good” and “Very Good” distance.
• One alternative that preserves ordering with binary features:

• Regression weight wmedium represents: 
– “How much medium changes prediction over bad”.

• Bonus slides discuss “cyclic” features like “time of day”.

Rating

Bad

Very Good

Good

Good

Very Bad

Good

Medium

≥ Bad ≥ Medium ≥ Good Very Good

1 0 0 0

1 1 1 1

1 1 1 0

1 1 1 0

0 0 0 0

1 1 1 0

1 1 0 0



Next Topic: Personalized Features



Motivation: “Personalized” Important E-mails

• Features: bag of words, trigrams, regular expressions, and so on.

• There might be some “globally” important messages:
– “This is your mother, something terrible happened, give me a call ASAP.”

• But your “important” message may be unimportant to others.
– Similar for spam: “spam” for one user could be “not spam” for another.



“Global” and “Local” Features
• Consider the following weird feature transformation:

• First feature: did “340” appear in this e-mail?
• Second feature: if “340” appeared in this e-mail, who was it addressed to?

• First feature will increase/decrease importance of “340” for every user (including new users).
• Second (categorical feature) increases/decreases importance of “340” for a specific user.

– Lets us learn more about specific users where we have a lot of data

“340” (any user) “340” (user?)

1 User 1

1 User 1

1 User 2

0 <no “340”>

1 User 3

“340”

1

1

1

0

1



“Global” and “Local” Features
• Recall we usually represent categorical features using “1 of k” binaries:

• First feature “moves the line up” for all users.
• Second feature “moves the line up” when the e-mail is to user 1.
• Third feature “moves the line up” when the e-mail is to user 2.

“340” (any user) “340” (user = 1) “340” (user = 2)

1 1 0

1 1 0

1 0 1

0 0 0

1 0 0

“340”

1

1

1

0

1



The Big Global/Local Feature Table for E-mails
• Each row is one e-mail (there are lots of rows):



Predicting Importance of E-mail For New User
• Consider a new user:
– We start out with no information about them.

• We initialize local weights wu to zero (so they have not effect new users).
– So we use global features to predict what is important to a generic user.

• With more data, update global features and user’s local features:
– Local features make prediction personalized.

– What is important to this user?
• Global weight for “Bitcoin” might be negative, but local weight is positive for some users.

• G-mail system: classification with logistic regression.
– Trained with a variant of stochastic gradient descent (later).



Summary
• Sigmoid function turns binary linear predictions into probabilities.

– Softmax functions turns multi-class linear predictions into probabilities.
• Feature engineering can be a key factor affecting performance.

– Good features depend on the task and the model.
• Bag of words: not a good representation in general.

– But good features if word order isn’t needed to solve problem.
• Universal text representation: also not a good general representation.

– But can solve any problem if you have enough data.
• Text features (beyond bag of words): trigrams, lexical, stem, shape.

– Try to capture important invariances in text data.
• Global vs. local features allow “personalized” predictions.

• Next time:
– A trick that lets you find gold and use the polynomial basis with d > 1.



“All-Pairs” and ECOC Classification
• Alternative to “one vs. all” to convert binary classifier to multi-class is 

“all pairs”.
– For each pair of labels ‘c’ and ‘d’, fit a classifier that predicts +1 for examples of 

class ‘c’ and -1 for examples of class ‘d’ (so each classifier only trains on examples 
from two classes).

– To make prediction, take a vote of how many of the (k-1) classifiers for class ‘c’ 
predict +1.

– Often works better than “one vs. all”, but not so fun for large ‘k’.
• Need O(k2) classifiers.

• A variation on this is using “error correcting output codes” from 
information theory (see Math 342).
– Each classifier trains to predict +1 for some of the classes and -1 for others.
– You setup the +1/-1 code so that it has an “error correcting” property.

• It will make the right decision even if some of the classifiers are wrong.



Motivation: Dog Image Classification
• Suppose we’re classifying images of dogs into breeds:

• What if we have images where class label isn’t obvious?
– Syberian husky vs. Inuit dog?

https://www.slideshare.net/angjoo/dog-breed-classification-using-part-localization
https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements



Learning with Preferences
• Do we need to throw out images where label is ambiguous?
– We don’t have the yi.

– We want classifier to prefer Syberian husky over bulldog, Chihuahua, etc.
• Even though we don’t know if these are Syberian huskies or Inuit dogs.

– Can we design a loss that enforces preferences rather than “true” labels?
https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements



Learning with Pairwise Preferences (Ranking)
• Instead of yi, we’re given list of (c1,c2) preferences for each ‘i’:

• Multi-class classification is special case of choosing (yi,c) for all ‘c’.

• By following the earlier steps, we can get objectives for this setting:

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements



Learning with Pairwise Preferences (Ranking)
• Pairwise preferences for computer graphics:
– We have a smoke simulator, with several parameters:

– Don’t know what the optimal parameters are, but we can ask the artist:
• “Which one looks more like smoke”?

https://circle.ubc.ca/bitstream/handle/2429/30519/ubc_2011_spring_brochu_eric.pdf?sequence=3



Learning with Pairwise Preferences (Ranking)
• Pairwise preferences for humour:
– New Yorker caption contest:

– “Which one is funnier”?

https://homes.cs.washington.edu/~jamieson/resources/next.pdf



Risk Scores
• In medicine/law/finance, risk scores are sometimes used to give probabilities:

– Get integer-valued “points” for each “risk factor”, and probability is computed from data 
based on people with same number of points.

– Less accurate than fancy models, but interpretable and can be done by hand.
• Some work on trying to “learn” the whole thing (like doing feature selection then rounding).

https://arxiv.org/pdf/1610.00168.pdf


