# CPSC 340: Machine Learning and Data Mining

Feature Engineering

## Last Time: Multi-Class Linear Classifiers

- We discussed multi-class classification: y<sub>i</sub> in {1,2,...,k}.
- One vs. all with +1/-1 binary classifier:
  - Train weights w<sub>c</sub> separately to predict +1 for class 'c', -1 otherwise.



#### Shape of Decision Boundaries

• Recall that a binary linear classifier splits space using a hyper-plane:



• Divides x<sub>i</sub> space into 2 "half-spaces".

#### Shape of Decision Boundaries

- Multi-class linear classifier is intersection of these "half-spaces":
  - This divides the space into convex regions (like k-means):



#### Shape of Decision Boundaries

- Multi-class linear classifier is intersection of these "half-spaces":
  - Though regions could be non-convex with non-linear feature transforms:





#### **Example Applications**



https://academic.oup.com/bioinformatics/article/40/2/btae063/7601321?login=false

#### Next Topic: Probabilistic Outputs

# Previously: Identifying Important E-mails

• Recall problem of identifying 'important' e-mails:

| COMPOSE              | 🔄 🙀 🕑 Mark Issam, Ricky (10) | Inbox A2, tutorials, marking C 10:41 am  |
|----------------------|------------------------------|------------------------------------------|
|                      | 🗌 📩 📄 Holger, Jim (2)        | lists Intro to Computer Science 10:20 am |
| Inbox (3)<br>Starred | 🔲 🙀 🗩 Issam Laradji          | Inbox Convergence rates for cu           |
| Important            | 🗌 📩 💌 sameh, Mark, sameh (3) | Inbox Graduation Project Dema @ 8:01 am  |
| Sent Mail            | 🗌 📩 💌 Mark sara, Sara (11)   | Label propagation @ 7:57 am              |

- We can do binary classification by taking sign of linear model:  $\hat{y}_i = sign(w^{\gamma}x_i)$ 
  - Convex loss functions (hinge/logistic loss) let us find an appropriate 'w'.
- But what if we want a probabilistic classifier?

- Want a model of  $P(y_i = "important" | x_i)$  for use in decision theory.

### Predictions vs. Probabilities

• With  $o_i = w^T x_i$ , linear classifiers make prediction using sign( $o_i$ ):



- For predictions, "sign" maps from o<sub>i</sub> to the elements {-1,+1}.
   If o<sub>i</sub> is positive we predict +1, if o<sub>i</sub> negative we predict -1.
- For probabilities, we want to map from o<sub>i</sub> to the range [0,1].
  - If  $o_i$  is very positive, we output a value close to +1 (confident  $y_i=1$ ).
  - If  $o_i$  is very negative, we output a value close to 0 (confident  $y_i$ =-1).
  - If  $o_i$  is close to 0, we output a value close to 0.5 (classes equally likely).

## Sigmoid Function

• So we want a transformation of  $o_i = w^T x_i$  that looks like this:

 Gives values in the range (0,1) that we'll interpret as probabilities
 The most common choice is the sigmoid function:

$$h(o_i) = \frac{1}{1 + exp(-o_i)}$$

• Values of h(o<sub>i</sub>) match what we want:

h(-a) = 0  $h(-1) \simeq 0.27$  h(0) = 0.5  $h(0.5) \simeq 0.62$   $h(+1) \simeq 0.73$   $h(+\infty) = 1$ 

## Probabilities for Linear Classifiers using Sigmoid

• Using sigmoid function, we output probabilities for linear models using:

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | w_{i} x_{i}) = \frac{1}{| t e r p (-w_{i}^{T} x_{i})}$$
  

$$(y_{i} = | w_{i} x_{i}$$

• Visualization for 2 features:

# Probabilities for Linear Classifiers using Sigmoid

• Using sigmoid function, we output probabilities for linear models using:

$$p(y_{i} = 1 \mid w_{j} x_{i}) = \frac{1}{1 + e_{i}p(-\frac{1}{\sqrt{2}x_{i}})}$$
  
By rules of probability:  
$$p(y_{i} = -1 \mid w_{j} x_{i}) = 1 - p(y_{i} = 1 \mid w_{j} x_{i})$$
$$= \frac{1}{1 + e_{i}p(\frac{1}{\sqrt{2}x_{i}})} \quad (with some effor 1)$$

- We then use these for "probability that e-mail is important".
- This may seem heuristic, but later we'll see that:
  - Minimizing logistic loss does "maximum likelihood estimation" in this model.

## Softmax Function: Multi-Class Probabilities

- We have thus far considered the binary case:.
  - We start with an  $o_i = w^T x_i$  in  $(-\infty,\infty)$ .
  - And we converted to probabilities in [0,1] using sigmoid( $o_i$ ).

$$Q_{i}=-1.1 = p(y_{i}=1|Q_{i}) = 0.25$$

- Now consider outputting probabilities in the multi-class case:
  - We have  $\ell$  real numbers  $o_{ic} = w_c^T x_i$  in  $(-\infty,\infty)$ .
  - We want to convert to  $\ell$  numbers in [0,1] that sum to 1.

$$\begin{array}{l} O_{i_{1}} = -O.1 \\ O_{i_{1}} = -O.8 \\ O_{i_{2}} = 0.9 \end{array} = \begin{array}{l} P(\gamma_{i} = 1 \ | O_{i_{1}} \cup O_{i_{2}} \cup O_{i_{3}}) = 0.24 \\ P(\gamma_{i} = 2 \ | O_{i_{1}} \cup O_{i_{2}} \cup O_{i_{3}}) = 0.12 \\ P(\gamma_{i} = 3 \ | O_{i_{1}} \cup O_{i_{2}} \cup O_{i_{3}}) = 0.12 \\ P(\gamma_{i} = 3 \ | O_{i_{2}} \cup O_{i_{3}}) = 0.64 \end{array}$$

## Softmax Function: Multi-Class Probabilities

• Most common way to convert to probabilities is with softmax:

$$\rho(\gamma_i = c \mid O_{i_1}, O_{i_2}, O_{i_2}) \ll exp(O_{i_c})$$

- Taking exp(o<sub>ic</sub>) makes it non-negative.
- To sum to one over value of s 'c', denominator sums over classes:

$$p(y_{i} = c | 0_{i_{1}}, 0_{i_{2}}, \dots, 0_{i_{d}}) = \frac{exp(0_{i_{c}})}{\sum_{c'=1}^{d} exp(0_{i_{c'}})}$$

- So this gives a probability for each of the ' $\ell$ ' possible values of 'c'.
  - Minimizing softmax loss does "maximum likelihood estimation" in this model.

#### Next Topic: Feature Engineering

## Feature Engineering

 "...some machine learning projects succeed and some fail. What makes the difference? Easily the most important factor is the features used."

– Pedro Domingos

- "Coming up with features is difficult, time-consuming, requires expert knowledge. "Applied machine learning" is basically feature engineering."
  - Andrew Ng

## Feature Engineering

- Better features usually help more than a better model.
- Good features would ideally:
  - Allow learning with few examples, be hard to overfit with many examples.
  - Capture most important aspects of problem.
  - Reflects invariances (generalize to new scenarios).
- There is a trade-off between simple and expressive features:
  - With simple features overfitting risk is low, but accuracy might be low.
  - With complicated features accuracy can be high, but so is overfitting risk.

### Feature Engineering

- The best features may be dependent on the model you use.
- For counting-based methods like naïve Bayes and decision trees:
  - Need to address coupon collecting, but separate relevant "groups".
- For distance-based methods like KNN:
  - Want different class labels to be "far".
- For regression-based methods like linear regression:
  - Want labels to have a linear dependency on features.

# **Discretization for Counting-Based Methods**

- For counting-based methods:
  - Discretization: turn continuous into discrete.



- Counting age "groups" could let us learn more quickly than exact ages.

• But we wouldn't do this for a distance-based method.

# Standardization for Distance-Based Methods

• Consider features with different scales:

| Egg (#) | Milk (mL) | Fish (g) | Pasta<br>(cups) |
|---------|-----------|----------|-----------------|
| 0       | 250       | 0        | 1               |
| 1       | 250       | 200      | 1               |
| 0       | 0         | 0        | 0.5             |
| 2       | 250       | 150      | 0               |

- Should we convert to some standard 'unit'?
  - It doesn't matter for counting-based methods.
- It matters for distance-based methods:
  - KNN will focus on large values more than small values.
  - Often we "standardize" scales of different variables (e.g., convert everything to grams).
  - Also need to worry about correlated features

#### Non-Linear Transformations for Regression-Based

Non-linear feature/label transforms can make things more linear:
 – Polynomial, exponential/logarithm, sines/cosines, RBFs.





Settings | Technicals | 📾 Link to this view

# **Discussion of Feature Engineering**

- The best feature transformations are application-dependent.
   It's hard to give general advice.
- Advice: ask the domain experts.
  - Often have idea of right discretization/standardization/transformation.
- If no domain expert, cross-validation will help.
   Or if you have lots of data, use deep learning methods from Part 5.
- Next: we'll discuss features used for text/image applications.

## **Domain-Specific Transformations**

- In some domains there are natural transformations to do:
  - Fourier coefficients and spectrograms (sound data).
  - Wavelets (image data).
  - Convolutions (we'll talk about these soon).





https://en.wikipedia.org/wiki/Fourier\_transform https://en.wikipedia.org/wiki/Spectrogram https://en.wikipedia.org/wiki/Discrete\_wavelet\_transform

## **Digression: Linear Models with Binary Features**

- What is the effect of a binary features on linear regression?
- Suppose we use a bag of words:
  - With 3 words {"hello", "Vicodin", "340"} our model would be:

$$\gamma' = W_1 X_{i1} + W_2 X_{i2} + W_3 X_{i3}$$
  

$$\sum_{kello"} whether \qquad lwhether "340" appears$$

- If e-mail only has "hello" and "340" our prediction is:

$$\bigwedge_{Y_i} = \underset{\substack{W_i \\ W_i \\ W$$

- So having the binary feature 'j' increases  $\hat{y}_i$  by the fixed amount  $w_j$ .
  - Predictions are a bit like naïve Bayes where we combine features independently.
  - But now we're learning all w<sub>j</sub> together so this tends to work better.

#### Next Topic: Features for Text Data

### Text Example 1: Language Identification

• Consider data that doesn't look like this:

$$X = \begin{bmatrix} 0.5377 & 0.3188 & 3.5784 \\ 1.8339 & -1.3077 & 2.7694 \\ -2.2588 & -0.4336 & -1.3499 \\ 0.8622 & 0.3426 & 3.0349 \end{bmatrix}, \quad y = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix},$$

• But instead looks like this:

$$X = \begin{bmatrix} \text{Do you want to go for a drink sometime?} \\ \text{J'achète du pain tous les jours.} \\ \text{Fais ce que tu veux.} \\ \text{There are inner products between sentences?} \end{bmatrix}, y = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix}$$

• How should we represent sentences using features?

# A (Bad) Universal Representation

- Treat character in position 'j' of the sentence as a categorical feature.
  - "fais ce que tu veux" => x<sub>i</sub> = [f a i s " c e " q u e " t u " v e u x .]
- "Pad" end of the sentence up to maximum #characters:
  - "fais ce que tu veux" =>  $x_i = [fais "ce "que "tu "veux. \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \dots]$
- Advantage:
  - No information is lost, KNN can eventually solve the problem.
- Disadvantage: throws out everything we know about language.
  - Needs to learn that "veux" starting from any position indicates "French".
    - Doesn't even use that sentences are made of words (this must be learned).
  - High overfitting risk, you will need a lot of examples for this easy task.

## Bag of Words Representation

• Bag of words represents sentences/documents by word counts:



• Bag of words loses a ton of information/meaning:

- But it easily solves language identification problem

### Universal Representation vs. Bag of Words

- Why is bag of words better than "string of characters" here?
  - It needs less data because it captures invariances for the task:
    - Most features give strong indication of one language or the other.
    - It doesn't matter *where* the French words appear.
  - It overfits less because it throws away irrelevant information.
    - Exact sequence of words isn't particularly relevant here.

# Text Example 2: Word Sense Disambiguation

- Consider the following two sentences:
  - "The cat ran after the mouse."
  - "Move the mouse cursor to the File menu."



Wireless Mouse,Ergonomic...

Cute mouse downloadable..

- Word sense disambiguation (WSD): classify "meaning" of a word:
   A surprisingly difficult task.
- You can do ok with bag of words, but it will have problems:
  - "Her mouse clicked on one cat video after another."
  - "We saw the mouse run out from behind the computer."
  - "The mouse was gray." (ambiguous without more context)

# **Bigrams and Trigrams**

- A bigram is an ordered set of two words:
  - Like "computer mouse" or "mouse ran".
- A trigram is an ordered set of three words:
  - Like "cat and mouse" or "clicked mouse on".
- These give more context/meaning than bag of words:
  - Includes neighbouring words as well as order of words.
  - Trigrams are widely-used for various language tasks.
- General case is called n-gram.
  - Unfortunately, coupon collecting becomes a problem with larger 'n'.

# Text Example 3: Part of Speech (POS) Tagging

- Consider problem of finding the verb in a sentence:
  - "The 340 students jumped at the chance to hear about POS features."
- Part of speech (POS) tagging is the problem of labeling all words.
  - >40 common syntactic POS tags.
  - Current systems have ~97% accuracy on standard ("clean") test sets.
  - You can achieve this by applying a "word-level" classifier to each word.
    - That independently classifies each word with one of the 40 tags.
- What features of a word should we use for POS tagging?

#### **POS Features**

- Regularized multi-class logistic regression with these features gives ~97% accuracy:
  - Categorical features whose domain is all words ("lexical" features):
    - The word (e.g., "jumped" is usually a verb).
    - The previous word (e.g., "he" hit vs. "a" hit).
    - The previous previous word.
    - The next word.
    - The next next word.
  - Categorical features whose domain is combinations of letters ("stem" features):
    - Prefix of length 1 ("what letter does the word start with?")
  - well-dressed Prefix of length 2. • Prefix of length 3.  $\operatorname{prefix}(w_i) = w$ • Prefix of length 4 ("does it start with JUMP?")  $\operatorname{prefix}(w_i) = \operatorname{we}$ • Suffix of length 1.  $prefix(w_i) = wel$ • Suffix of length 2.  $prefix(w_i) = well$ • Suffix of length 3 ("does it end in ING?")  $suffix(w_i) = ssed$ • Suffix of length 4.  $suffix(w_i) = sed$  Binary features ("shape" features):  $\operatorname{suffix}(w_i) = \operatorname{ed}$ • Does word contain a number?  $\operatorname{suffix}(w_i) = \mathbf{d}$  Does word contain a capital? has-hyphen( $w_i$ ) Does word contain a hyphen? word-shape( $w_i$ ) = xxxx-xxxxxx short-word-shape( $w_i$ ) = x-x

#### **Ordinal Features**

• Categorical features with an ordering are called ordinal features.



- If using decision trees, makes sense to replace with numbers.
  - Captures ordering between the ratings.
  - A rule like (rating  $\geq$  3) means (rating  $\geq$  Good), which make sense.

## **Ordinal Features**

- With linear models, "convert to number" assumes ratings are equally spaced.
  - "Bad" and "Medium" distance is similar to "Good" and "Very Good" distance.
- One alternative that preserves ordering with binary features:

| Rating    | ≥ Bad | ≥ Medium | ≥ Good | Very Good |
|-----------|-------|----------|--------|-----------|
| Bad       | 1     | 0        | 0      | 0         |
| Very Good | 1     | 1        | 1      | 1         |
| Good      | <br>1 | 1        | 1      | 0         |
| Good      | 1     | 1        | 1      | 0         |
| Very Bad  | 0     | 0        | 0      | 0         |
| Good      | 1     | 1        | 1      | 0         |
| Medium    | 1     | 1        | 0      | 0         |

- Regression weight w<sub>medium</sub> represents:
  - "How much medium changes prediction over bad".
- Bonus slides discuss "cyclic" features like "time of day".

#### Next Topic: Personalized Features

# Motivation: "Personalized" Important E-mails

| COMPOSE              | 🔲 📩 🐌 Mark Issam, Ricky (10)        | Inbox A2, tutorials, marking @ 10:41 am  |
|----------------------|-------------------------------------|------------------------------------------|
|                      | 🗌 🕁 📄 Holger, Jim (2)               | lists Intro to Computer Science 10:20 am |
| Inbox (3)<br>Starred | 🔲 📩 🐌 Issam Laradji                 | Inbox Convergence rates for cu           |
| Important            | 🔲 ☆ 💌 sameh, Mark, <b>sameh</b> (3) | Inbox Graduation Project Dema @ 8:01 am  |
| Sent Mail            | 🗌 📩 » Mark sara, Sara (11)          | Label propagation @ 7:57 am              |

• Features: bag of words, trigrams, regular expressions, and so on.

- There might be some "globally" important messages:
  - "This is your mother, something terrible happened, give me a call ASAP."
- But your "important" message may be unimportant to others.
  - Similar for spam: "spam" for one user could be "not spam" for another.

## "Global" and "Local" Features

• Consider the following weird feature transformation:

| "340" |               | "340" (any user) | "340" (user?)      |
|-------|---------------|------------------|--------------------|
| 1     |               | 1                | User 1             |
| 1     | $\rightarrow$ | 1                | User 1             |
| 1     |               | 1                | User 2             |
| 0     |               | 0                | <no "340"=""></no> |
| 1     |               | 1                | User 3             |

- First feature: did "340" appear in this e-mail?
- Second feature: if "340" appeared in this e-mail, who was it addressed to?
- First feature will increase/decrease importance of "340" for every user (including new users).
- Second (categorical feature) increases/decreases importance of "340" for a specific user.
  - Lets us learn more about specific users where we have a lot of data

## "Global" and "Local" Features

• Recall we usually represent categorical features using "1 of k" binaries:

| "340" |               | <b>"340" (any user)</b> | "340" (user = 1) | "340" (user = 2) |
|-------|---------------|-------------------------|------------------|------------------|
| 1     |               | 1                       | 1                | 0                |
| 1     | $\rightarrow$ | 1                       | 1                | 0                |
| 1     |               | 1                       | 0                | 1                |
| 0     |               | 0                       | 0                | 0                |
| 1     |               | 1                       | 0                | 0                |

- First feature "moves the line up" for all users.
- Second feature "moves the line up" when the e-mail is to user 1.
- Third feature "moves the line up" when the e-mail is to user 2.

## The Big Global/Local Feature Table for E-mails

• Each row is one e-mail (there are lots of rows):



# Predicting Importance of E-mail For New User

- Consider a new user:
  - We start out with no information about them.
    - We initialize local weights w<sub>u</sub> to zero (so they have not effect new users).
  - So we use global features to predict what is important to a generic user.

$$\hat{y}_i = \text{Sign}(w_g^T x_{ig})$$
 = features/weights shared  
across users.

- With more data, update global features and user's local features:
  - Local features make prediction *personalized*.

- What is important to *this* user?
  - Global weight for "Bitcoin" might be negative, but local weight is positive for some users.
- G-mail system: classification with logistic regression.
  - Trained with a variant of stochastic gradient descent (later).

## Summary

- Sigmoid function turns binary linear predictions into probabilities.
  - Softmax functions turns multi-class linear predictions into probabilities.
- Feature engineering can be a key factor affecting performance.
  - Good features depend on the task and the model.
- Bag of words: not a good representation in general.
  - But good features if word order isn't needed to solve problem.
- Universal text representation: also not a good general representation.
  - But can solve any problem if you have enough data.
- Text features (beyond bag of words): trigrams, lexical, stem, shape.
  - Try to capture important invariances in text data.
- Global vs. local features allow "personalized" predictions.
- Next time:
  - A trick that lets you find gold and use the polynomial basis with d > 1.

## "All-Pairs" and ECOC Classification

- Alternative to "one vs. all" to convert binary classifier to multi-class is "all pairs".
  - For each pair of labels 'c' and 'd', fit a classifier that predicts +1 for examples of class 'c' and -1 for examples of class 'd' (so each classifier only trains on examples from two classes).
  - To make prediction, take a vote of how many of the (k-1) classifiers for class 'c' predict +1.
  - Often works better than "one vs. all", but not so fun for large 'k'.
    - Need O(k<sup>2</sup>) classifiers.
- A variation on this is using "error correcting output codes" from information theory (see Math 342).
  - Each classifier trains to predict +1 for some of the classes and -1 for others.
  - You setup the +1/-1 code so that it has an "error correcting" property.
    - It will make the right decision even if some of the classifiers are wrong.

## Motivation: Dog Image Classification

• Suppose we're classifying images of dogs into breeds:



- What if we have images where class label isn't obvious?
  - Syberian husky vs. Inuit dog?



https://www.slideshare.net/angjoo/dog-breed-classification-using-part-localization https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements

### Learning with Preferences

- Do we need to throw out images where label is ambiguous?
  - We don't have the y<sub>i</sub>.



- We want classifier to prefer Syberian husky over bulldog, Chihuahua, etc.
  - Even though we don't know if these are Syberian huskies or Inuit dogs.
- Can we design a loss that enforces preferences rather than "true" labels?

## Learning with Pairwise Preferences (Ranking)

• Instead of y<sub>i</sub>, we're given list of (c<sub>1</sub>,c<sub>2</sub>) preferences for each 'i':

We want 
$$W_{c_1}^T x_i > W_{c_2}^T x_i$$
 for these particular  $(c_{1}, c_2)$  values

• Multi-class classification is special case of choosing (y<sub>i</sub>,c) for all 'c'.

• By following the earlier steps, we can get objectives for this setting:

$$\sum_{i=1}^{n} \sum_{(c_{i},c_{2})} \max_{z} \{0, 1-w_{c_{i}}^{T}x_{i}+w_{c_{2}}^{T}x_{i}\} + \frac{1}{2} ||W||_{F}$$

# Learning with Pairwise Preferences (Ranking)

- Pairwise preferences for computer graphics:
  - We have a smoke simulator, with several parameters:



- Don't know what the optimal parameters are, but we can ask the artist:

• "Which one looks more like smoke"?

# Learning with Pairwise Preferences (Ranking)

- Pairwise preferences for humour:
  - New Yorker caption contest:



– "Which one is funnier"?

https://homes.cs.washington.edu/~jamieson/resources/next.pdf

## **Risk Scores**

• In medicine/law/finance, risk scores are sometimes used to give probabilities:

| 1. | Congestive Heart Failure                  | 1 point  |   |  |
|----|-------------------------------------------|----------|---|--|
| 2. | Hypertension                              | 1 point  | + |  |
| 3. | Age $\geq$ 75                             | 1 point  | + |  |
| 4. | Diabetes Mellitus                         | 1 point  | + |  |
| 5. | Prior Stroke or Transient Ischemic Attack | 2 points | + |  |
|    |                                           | SCORE    | = |  |

| SCORE | 0    | 1    | 2    | 3    | 4    | 5     | 6     |
|-------|------|------|------|------|------|-------|-------|
| RISK  | 1.9% | 2.8% | 4.0% | 5.9% | 8.5% | 12.5% | 18.2% |

Figure 1: CHADS<sub>2</sub> risk score of Gage et al. (2001) to assess stroke risk (see www.mdcalc.com for other medical scoring systems). The variables and points of this model were determined by a panel of experts, and the risk estimates were computed empirically from data.

- Get integer-valued "points" for each "risk factor", and probability is computed from data based on people with same number of points.
- Less accurate than fancy models, but interpretable and can be done by hand.
  - Some work on trying to "learn" the whole thing (like doing feature selection then rounding).