
CPSC 340:
Machine Learning and Data Mining

Robust Regression



Last Time: Gradient Descent and Convexity
• We introduced gradient descent:
– Uses sequence of iterations of the form:

– Converges to a stationary point where ∇ f(w) = 0 under weak conditions.
• Will be a global minimum if the function is convex.

• We discussed ways to show a function is convex:
– Second derivative is non-negative (1D functions).
– Closed under addition, multiplication by non-negative, maximization.
– Any [squared-]norm is convex.
– Composition of convex function with linear function is convex.



Least Squares with Outliers
• Height vs. weight of NBA players:

https://www.youtube.com/watch?v=i4eYWl1ewFo



Least Squares with Outliers
• Consider least squares problem with outliers in ‘y’:

http://setosa.io/ev/ordinary-least-squares-regression

http://setosa.io/ev/ordinary-least-squares-regression


Least Squares with Outliers
• Squaring error shrinks small errors, and magnifies large errors:

• Outliers (large error) influence ‘w’ much more than other points.

https://seeing-theory.brown.edu/regression-analysis/index.html

https://seeing-theory.brown.edu/regression-analysis/index.html


Least Squares with Outliers
• Consider least squares problem with outliers in ‘y’:

• Least squares is very sensitive to outliers.



Least Squares with Outliers
• Squaring error shrinks small errors, and magnifies large errors:

• Outliers (large error) influence ‘w’ much more than other points.
– Good if outlier means ‘plane crashes’, bad if it means ‘data entry error’.



Robust Regression
• Robust regression objectives focus less on large errors (outliers).
• For example, use absolute error instead of squared error:

• Now decreasing ‘small’ and ‘large’ errors is equally important.
• Instead of minimizing L2-norm, minimizes L1-norm of residuals 

(Least Absolute Deviation):



Least Squares with Outliers
• Absolute error is more robust to outliers:



Least Square vs Least Absolute Deviation

https://link.springer.com/referenceworkentry/10.1007/978-0-387-32833-1_225

https://www.cantorsparadise.com/least-
squares-vs-least-absolute-errors-a-250-
year-old-debate-bf102929a80f



Least Square vs Least Absolute Deviation

Sir Arthur Eddington

Peter Huber



Regression with the L1-Norm
• Unfortunately, minimizing the absolute error is harder.
– We don’t have “normal equations” for minimizing the L1-norm.
– Absolute value is non-differentiable at 0.

– Generally, harder to minimize non-smooth than smooth functions.
• Unlike smooth functions, the gradient may not get smaller near a minimizer.

– To apply gradient descent, we’ll use a smooth approximation.



Smooth Approximations to the L1-Norm
• There are differentiable approximations to absolute value.
– Common example is Huber loss:

– Note that ‘h’ is differentiable: h’(ε) = ε and h’(-ε) = -ε.
– This ‘f’ is convex but setting 𝛻f(x) = 0 does not give a linear system.

• But we can minimize the Huber loss using gradient descent.



Very Robust Regression

• Non-convex errors can be very robust:
– Not influenced by outlier groups.



Very Robust Regression

• Non-convex errors can be very robust:
– Not influenced by outlier groups.
– But non-convex, so finding

global minimum is hard.
– Absolute value is “most robust”

convex loss function.



Very Robust Regression



Is Robust Regression Used?

• Because real data are typically noisy, and 
robust regression generally produce better 
results 

• Not widely used because, e.g., 1) software, 2) 
we already have least square, 3) people don’t 
familiar with robust regression, … 
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Least Square and the Gaussian Distribution

Linear regression

Francis Galton’s father and son heights

ri = wTxi – yi follows a normal 
distribution N(0, 𝜎2)

For LAD, the residual follows a 
Laplace distribution

Father’ 
height

Son’s height



Next Topic: Brittle Regression



Motivation for Modeling Outliers

https://xkcd.com/937/

• What if the “outlier” is the only male person in your dataset?
– Do you want to be robust to the outlier?
– Will the model work for everyone if it has good average case performance?



Accuracy vs. Fairness Trade-Off?
• Improving test error might need to make fairness worse?
– If you chase you outliers you might worsen generalization.
– If you do not chase the outliers you might worsen fairness.

• Recent related paper:

https://www.jmlr.org/papers/v23/21-1427.html



“Brittle” Regression
• What if you really care about getting the outliers right?
– You want to minimize size of worst error across examples.

• For example, if in worst case the plane can crash or you perform badly on a group.

• In this case you could use something like the infinity-norm:

• Very sensitive to outliers (“brittle”), but minimizes highest error.
– Different than previous errors, which were all some sort of average.



Log-Sum-Exp Function
• As with the L1-norm, the L∞-norm is convex but non-smooth:

– We can again use a smooth approximation and fit it with gradient descent.

• Convex and smooth approximation to max function is log-sum-exp function:

– We will use this several times in the course.
– Notation alert: when I write “log” I always mean “natural” logarithm: log(e) = 1.

• Intuition behind log-sum-exp:
– ∑𝑖 exp 𝑧! ≈ max

!
exp(𝑧!), as largest element is magnified exponentially (if no ties).

– And notice that log(exp(zi)) = zi.



Log-Sum-Exp Function Examples
• Log-sum-exp function as smooth approximation to max:

• If there aren’t “close” max values, it’s really close to the max.

• Comparison of max{0,w} and smooth log(exp(0) + exp(w)):



Next Topic: Model Selection



Finding the “True” Model
• To measure performance we have focused on minimize test error.
– This is good if our goal is to predict on well on new IID data
– But this is a weird way to do science!

• “It's true there's been a lot of work on trying to apply statistical models to various 
linguistic problems. I think there have been some successes, but a lot of failures. 
There is a notion of success ... which I think is novel in the history of science. It 
interprets success as approximating unanalyzed data.” Noam Chomsky.



Finding the “True” Model
• To measure performance we have focused on minimize test error.
– This is good if our goal is to predict on well on new IID data
– But this is a weird way to do science!

• We normally want to design simple models that explain the world.
– Might work even if new data is not IID!

– Next topic: finding the “true” model.
• Hint: it is hard unless things are simple!

https://www.discovermagazine.com/the-sciences/the-5-most-important-scientific-equations-of-all-time



Finding the “True” Model
• Consider a simple case of trying to find the “true” model?
– We believe that yi really is a polynomial function of xi.
– We want to find the degree of the polynomial ‘p’.

• Should we choose the ‘p’ with the lowest training error?
– No, this will pick a ‘p’ that is too large. 

(training error always decreases as you increase ‘p’)
http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf



Finding the “True” Model
• Consider a simple case of trying to find the “true” model?
– We believe that yi really is a polynomial function of xi.
– We want to find the degree of the polynomial ‘p’.

• Should we choose the ‘p’ with the lowest validation error?
– This will also often choose a ‘p’ that is too large (due to optimization bias).

– Consider a case where the true model has p=2 (quadratic function).
• We fit a quadratic function yi = 2xi2 – 5, and a cubic function yi = 0.00001xi3 + 2xi2 - 5.
• Cubic is wrong, but by chance might get a lower error on a particular validation set.

– If we try many models, there are more “chances” to randomly get a lower validation error.



Complexity Penalties
• There are a lot of “scores” people use to find the “true” model.
• Basic idea behind them: put a penalty on the model complexity.
– Want to fit the data and have a simple model.

• For example, minimize training error plus the degree of polynomial.

– If we use p=4, use “training error plus 4” as error.

• If two ‘p’ values have similar error, this prefers the smaller ‘p’.



Choosing Degree of Polynomial Basis
• How can we optimize this score?

– Form Z0, solve for ‘v’, compute score(0) = ½||Z0v – y||2 + 0.
– Form Z1, solve for ‘v’, compute score(1) = ½||Z1v – y||2 + 1.
– Form Z2, solve for ‘v’, compute score(2) = ½||Z2v – y||2 + 2.
– Form Z3, solve for ‘v’, compute score(3) = ½||Z3v – y||2 + 3.

– Choose the degree with the lowest score.
• “You need to decrease training error by at least 1 to increase degree by 1.”



Information Criteria
• There are many scores, usually with the form:

– The value ‘k’ is the “number of estimated parameters” (“degrees of freedom”).
• For polynomial basis, we have k = (p+1).

– The parameter λ > 0 controls how strong we penalize complexity.
• “You need to decrease the training error by least λ to increase ‘k’ by 1”.

• Using (λ = 1) is called Akaike information criterion (AIC), the RSS is also 
weighted (the negative loglikelihood).

• Other choices of λ (not necessarily integer) give other criteria:
– Mallow’s Cp.
– Adjusted R2.
– ANOVA-based model selection.



Choosing Degree of Polynomial Basis
• How can we optimize this score in terms of ‘p’?

– Form Z0, solve for ‘v’, compute score(0) = ½||Z0v – y||2 + λ.
– Form Z1, solve for ‘v’, compute score(1) = ½||Z1v – y||2 + 2λ.
– Form Z2, solve for ‘v’, compute score(2) = ½||Z2v – y||2 + 3λ.
– Form Z3, solve for ‘v’, compute score(3) = ½||Z3v – y||2 + 4λ.

– So we need to improve by “at least λ” to justify increasing degree.
• If λ is big, we’ll choose a small degree. If λ is small, we’ll choose a large degree.



Why Model Selection?

George E. P. Box 



Summary
• Outliers in ‘y’ can cause problem for least squares.
• Robust regression using L1-norm is less sensitive to outliers.
• Brittle regression using Linf-norm is more sensitive to outliers.
• Smooth approximations:
– Let us apply gradient descent to non-smooth functions.
– Huber loss is a smooth approximation to absolute value.
– Log-Sum-Exp is a smooth approximation to maximum.

• Information criteria are scores that penalize number of parameters.
– When we want to find the “true” model.

• Next time:
– Can we find the “true” features?



Random Sample Consensus (RANSAC)
• In computer vision, a widely-used generic framework for robust 

fitting is random sample consensus (RANSAC).
• This is designed for the scenario where:
– You have a large number of outliers.
– Majority of points are “inliers”: 

it’s really easy to get low error on them.

https://en.wikipedia.org/wiki/Random_sample_consensus



Random Sample Consensus (RANSAC)
• RANSAC:
– Sample a small number of training examples.

• Minimum number needed to fit the model.
• For linear regression with 1 feature, just 2 examples.

– Fit the model based on the samples.
• Fit a line to these 2 points.
• With ‘d’ features, you’ll need ‘d+1’ examples.

– Test how many points are fit well 
based on the model.

– Repeat until we find a model that fits at 
least the expected number of “inliers”.

• You might then re-fit based on the
estimated “inliers”.

https://en.wikipedia.org/wiki/Random_sample_consensus



Log-Sum-Exp for Brittle Regression
• To use log-sum-exp for brittle regression:



Log-Sum-Exp Numerical Trick
• Numerical problem with log-sum-exp is that exp(zi) might overflow.
– For example, exp(100) has more than 40 digits.

• Implementation ‘trick’:



Gradient Descent for Non-Smooth?

• “You are unlikely to land on a non-smooth point, so gradient descent 
should work for non-smooth problems?”
– Consider just trying to minimize the absolute value function:

– Norm(gradient) is constant when not at 0, so unless you are lucky enough to hit 
exactly 0, you will just bounce back and forth forever.

– We didn’t have this problem for smooth functions, since the gradient gets 
smaller as you approach a minimizer.

– You could fix this problem by making the step-size slowly go to zero, but you 
need to do this carefully to make it work, and the algorithm gets much slower.



Gradient Descent for Non-Smooth?
• Counter-example from Bertsekas’ “Ngradient descent for a non-

smooth convex problem does not converge to a minimum.onlinear
Programming” where


