CPSC 340:
Machine Learning and Data Mining



Last Time: Gradient Descent and Convexity

a

 We introduced gradient descent:

— Uses sequence of iterations of the form:
\/\/Jw: wt -a" V”w@

— Converges to a stationary point where V f(w) = 0 under weak conditions.
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* Will be a global minimum if the function is convex.

* We discussed ways to show a function is convex:
— Second derivative is non-negative (1D functions).
— Closed under addition, multiplication by non-negative, maximization.
— Any [squared-]norm is convex.

— Composition of convex function with linear function is convex.



Least Squares with Outliers

* Height vs. weight of NBA players:
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Least Squares with Outliers

* Consider least squares problem with outligrs in ‘y’:
x & outlier  Thit doesn't fo/lse ren J
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http://setosa.io/ev/ordinary-least-squares-regression



http://setosa.io/ev/ordinary-least-squares-regression
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Least Squares with Outliers

* Squaring error shrinks small errors, and magnifies largk errors:
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* QOutliers (large error) influence ‘w’ much more than other points.

https://seeing-theory.brown.edu/regression-analysis/index.html
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Least Squares with Outliers

* Consider least squares problem with outligrs in‘y’:
x & outlier  Thit doesn't fo/lse ren J
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* Least squares is very sensitive to outliers.



Least Squares with Outliers

* Squaring error shrinks small errors, and magnifies large errors:
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* QOutliers (large error) influence ‘w’ much more than other points.

— Good if outlier means ‘plane crashes’, bad if it means ‘data entry error’. ,
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Robust Regression

Robust regression objectives focus less on large errors (outliers).
For example, use absolute error instead of squared error:
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Now decreasing ‘small’ and ‘large’ errors is equally important.

Instead of minimizing L2-norm, minimizes L1-norm of residuals
(Least Absolute Deviation):
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Least Squares with Outliers

e Absolute error is more robust to outliers:
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Least Square vs Least Absolute Deviation

The least absolute deviation regression was introduced around 50 years before the least-
squares method, in 1757, by Roger Joseph Boscovich. He used this procedure while trying
to reconcile incoherent measures that were used to estimate the shape of the earth. Pierre
Simon de Laplace adopted this method 30 years later, yet it was obscured under the shadow
of the least-squares method developed by Adrien Marie Legendre and Carl Friedrich
Gauss. The easy calculus of the least-squares method made least squares much more
popular than the LAD method. Yet in recent years and with advances in statistical computing,

the LAD method can be easily used.

“The method of least squares, when applied to a system of observations, in which
one of the extreme errors is very great, does not generally give so correct a result as
the method proposed by Boscovich [...]; the reason is, that in the former method,
this extreme error [like any other] affects the result in proportion to the second
power of the error; but in the other method, it is as the first power.” — Bowditch

(c.1830) (source) https://www.cantorsparadise.com/least-

squares-vs-least-absolute-errors-a-250-
https://link.springer.com/referenceworkentry/10.1007/978-0-387-32833-1_225 year-old-debate-bf102929a80f



Least Square vs Least Absolute Deviation

Similar to Gauss and Legendre, Eddington was also working on estimation
problems in astronomy. In his 1914 work Stellar Movements and The Structure
of The Universe, he states that

“in calculating the mean error of a series of observations it is preferable to use the

simple mean residual irrespective of sign rather than the mean square residual ...

)

... this is contrary to the advice of most textbooks, but it can be shown to be true”
— Eddington (1914) (source)

“thus it becomes painfully clear that the naturally occurring deviations from the

idealized model are large enough to render meaningless the traditional asymptotic

optimality theory”. — Peter Huber (1981)

Peter Huber



Regression with the L1-Norm

* Unfortunately, minimizing the absolute error is harder.

— We don’t have “normal equations” for minimizing the L1-norm.
— Absolute value is non-differentiable at O.
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— Generally, harder to minimize non-smooth than smooth functions.
e Unlike smooth functions, the gradient may not get smaller near a minimizer.

— To apply gradient descent, we’ll use a smooth approximation.



Smooth Approximations to the L1-Norm

* There are differentiable approximations to absolute value.

— Common example is Huber loss: .
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— Note that ‘h’ is differentiable: h’(€) = € and h'(-¢) = -¢.

— This ‘f” is convex but setting VV'f(x) = 0 does not give a linear system.
e But we can minimize the Huber loss using gradient descent.



Very Robust Regression
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* Non-convex errors can be very robust:

— Not influenced by outlier groups.

/L, error m)géf do
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Very Robust Regression

Non=convey ¢€rrors
are much more
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* Non-convex errors can be very robust:

— Not influenced by outlier groups.
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/L, error M)QM do

S om('l'king like This.

— But non-convex, so finding
global minimum is hard.

— Absolute value is “most robust”
convex loss function.
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pick’ This  line.



intercept

= global minimum (absolute error)

Very Robust Regression

Absolute Error (convex)
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data points

= local minimum (square root error)

intercept

Square Root Error (non-convex)
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|s Robust Regression Used?

# mouse genes
3000 4000 5000 6000

2000

1000

* Because real data are typically noisy, and
robust regression generally produce better
results

0.00556007077477843

 Not widely used because, e.g., 1) software, 2)
we already have least square, 3) people don’t
familiar with robust regression, ...

0.00401516988162379

) 2000 4000 6000 8000

# human genes

https://www.nature.com/articles/s41587-020-0465-
8/figures/12



Least Square and the Gaussian Distribution

LA AN AN r, = w'x; —y, follows a normal

-
e -,

distribution N(O, 0?)

For LAD, the residual follows a
Laplace distribution

Father’
height

Son’s height

Francis Galton’s father and son heights



Next Topic: Brittle Regression



Motivation for Modeling Outliers
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THE PROBLEM WITH
AVERAGING STAR RATINGS

 What if the “outlier” is the only male person in your dataset?

— Do you want to be robust to the outlier?
— Will the model work for everyone if it has good average case performance?

https://xkcd.com/937/



Accuracy vs. Fairness Trade-Off?

* Improving test error might need to make fairness worse?

— |f you chase you outliers you might worsen generalization.
— |f you do not chase the outliers you might worsen fairness.

¢ Rece nt re | ated pa pe I". Inherent Tradeoffs in Learning Fair Representations

Han Zhao, Geoffrey J. Gordon; 23(57):1-26, 2022.
Abstract

Real-world applications of machine learning tools in high-stakes domains are often regulated to be fair, in the sense that the
predicted target should satisfy some quantitative notion of parity with respect to a protected attribute. However, the exact
tradeoff between fairness and accuracy is not entirely clear, even for the basic paradigm of classification problems. In this
paper, we characterize an inherent tradeoft between statistical parity and accuracy in the classification setting by providing a
lower bound on the sum of group-wise errors of any fair classifiers. Our impossibility theorem could be interpreted as a certain
uncertainty principle in fairness: if the base rates differ among groups, then any fair classifier satisfying statistical parity has to
incur a large error on at least one of the groups. We further extend this result to give a lower bound on the joint error of any
(approximately) fair classifiers, from the perspective of learning fair representations. To show that our lower bound is tight,
assuming oracle access to Bayes (potentially unfair) classifiers, we also construct an algorithm that returns a randomized
classifier which is both optimal (in terms of accuracy) and fair. Interestingly, when the protected attribute can take more than
two values, an extension of this lower bound does not admit an analytic solution. Nevertheless, in this case, we show that the
lower bound can be efficiently computed by solving a linear program, which we term as the TV-Barycenter problem, a
barycenter problem under the TV-distance. On the upside, we prove that if the group-wise Bayes optimal classifiers are close,
then learning fair representations leads to an alternative notion of fairness, known as the accuracy parity, which states that the
error rates are close between groups. Finally, we also conduct experiments on real-world datasets to confirm our theoretical
findings.



“Brittle” Regression

 What if you really care about getting the outliers right?

— You want to minimize size of worst error across examples.
* For example, if in worst case the plane can crash or you perform badly on a group.

* |n this case you could use something like the infinity-norm:

Flw) = 11X w- ¢
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* Very sensitive to outliers (“brittle”), but minimizes highest error.
— Different than previous errors, which were all some sort of average.




Log-Sum-Exp Function

* As with the L;-norm, the L..-norm is convex but non-smooth:
— We can again use a smooth approximation and fit it with gradient descent.

* Convex and smooth approximation to max function is log-sum-exp function:

max(x)

m_\mygzig //5 loa( Ziex/o(ZJ)

— We will use this several times in the course.
— Notation alert: when | write “log” | always mean “natural” logarithm: log(e) = 1.

* Intuition behind log-sum-exp:
— Yiexp(z;) = maxexp(z;), as largest element is magnified exponentially (if no ties).
l

— And notice that log(exp(z)) = z;.



Log-Sum-Exp Function Examples

* Log-sum-exp function as smooth approximation to max:

m_\”"( gzl- § " loac éi@XP (2))
* |fthere aren’t “close” max values, it’s really close to the max.
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/
 Comparison of max{0,w} and smooth log(exp(0) + exp(w)):
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Next Topic: Model Selection



Finding the “True” Model

 To measure performance we have focused on minimize test error.

— This is good if our goal is to predict on well on new IID data
— But this is a weird way to do science!

* “It's true there's been a lot of work on trying to apply statistical models to various
linguistic problems. | think there have been some successes, but a lot of failures.
There is a notion of success ... which | think is novel in the history of science. It
interprets success as approximating unanalyzed data.” Noam Chomsky.



Finding the “True” Model

 To measure performance we have focused on minimize test error.

— This is good if our goal is to predict on well on new IID data
— But this is a weird way to do science!
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e Hint: it is hard unless things are simple!




Finding the “True” Model

* Consider a simple case of trying to find the “true” model?

— We believe that y; really is a polynomial function of x..
— We want to find the degree of the polynomial ‘p’.
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e Should we choose the ‘p’ with the lowest training error?

— No, this will pick a ‘p’ that is too large.
(training error always decreases as you increase ‘p’)



Finding the “True” Model

* Consider a simple case of trying to find the “true” model?

— We believe that y; really is a polynomial function of x..
— We want to find the degree of the polynomial ‘p’.

* Should we choose the ‘p’ with the lowest validation error?
— This will also often choose a ‘p’ that is too large (due to optimization bias).

— Consider a case where the true model has p=2 (quadratic function).

* We fit a quadratic function y, = 2x;> — 5, and a cubic function y, = 0.00001x. + 2x.2 - 5.
e Cubicis wrong, but by chance might get a lower error on a particular validation set.

— If we try many models, there are more “chances” to randomly get a lower validation error.



Complexity Penalties

 There are a lot of “scores” people use to find the “true” model.
e Basic idea behind them: put a penalty on the model complexity.

— Want to fit the data and have a simple model.

* For example, minimize training error plus the degree of polynomial.

L : ;‘(; ((x.))); o ((x'))f;'\ Flﬂi /'0\ ]Ll’lq‘/' Mminimizes
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— If we use p=4, use “training error plus 4” as error. Polynormia

* If two ‘p’ values have similar error, this prefers the smaller ‘p’.



Choosing Degree of Polynomial Basis
* How can we optimize this score?
SCove ( 4)) - -"5“7,,\/‘7 '/z + P

— Form Z,, solve for ‘v’, compute score(0) = ¥2| | Z,v —y| |2 + O.
— Form Z,, solve for ‘v/, compute score(1) = 2| |Z,v—y]||? + 1.
— Form Z,, solve for ‘v/, compute score(2) = 2| |Z,v—y]| |? + 2.

— Form Z;, solve for ‘v/, compute score(3) = ¥2| | Zsv—y| |2 + 3.

— Choose the degree with the lowest score.

* “You need to decrease training error by at least 1 to increase degree by 1.”



Information Criteria

 There are many scores, usually with the form:
SCove ( f) - %”Zf\/‘y '/z + )\ K

— The value ‘k’ is the “number of estimated parameters” (“degrees of freedom”).
* For polynomial basis, we have k = (p+1).

— The parameter A > 0 controls how strong we penalize complexity.
* “You need to decrease the training error by least A to increase ‘k’ by 1”.

e Using (A =1) is called Akaike information criterion (AIC), the RSS is also
weighted (the negative loglikelihood).
e Other choices of A (not necessarily integer) give other criteria:
— Mallow’s C,..
— Adjusted R?.
— ANOVA-based model selection.



Choosing Degree of Polynomial Basis
* How can we optimize this score in terms of ‘p’?

Slove ( 4)) = -"5”7,,\/‘7 '/z + \K

— Form Z,, solve for ‘v/, compute score(0) = Y2 | |Z,v —y| |2 + A.
— Form Z,, solve for ‘v/, compute score(1) = ¥2| |Z,v—y| |2 + 2A.
— Form Z,, solve for ‘v/, compute score(2) = ¥2| |Z,v—y| |? + 3\.

— Form Z;, solve for ‘v/, compute score(3) = ¥2| | Z3v—vy]| | ? + 4A.

— So we need to improve by “at least A” to justify increasing degree.

* If Ais big, we’ll choose a small degree. If A is small, we’ll choose a large degree.



Why Model Selection?

Since all models are wrong the scientist cannot obtain
a ‘‘correct’’ one by excessive elaboration. On the contrary
following William of Occam he should seek an economical
description of natural phenomena. Just as the ability to
devise simple but evocative models is the signature of the
great scientist so overelaboration and overparameteriza-
tion 1s often the mark of mediocrity.

George E. P. Box



Summary

Outliers in ‘y’ can cause problem for least squares.
Robust regression using L1-norm is less sensitive to outliers.
Brittle regression using Linf-norm is more sensitive to outliers.

Smooth approximations:

— Let us apply gradient descent to non-smooth functions.
— Huber loss is a smooth approximation to absolute value.
— Log-Sum-Exp is a smooth approximation to maximum.

Information criteria are scores that penalize number of parameters.
— When we want to find the “true” model.

Next time:
— Can we find the “true” features?



Random Sample Consensus (RANSAC)

* In computer vision, a widely-used generic framework for robust
fitting is random sample consensus (RANSAC).

* This is designed for the scenario where: . o

— You have a large number of outliers. y . .

— Majority of points are “inliers”: . o of
it’s really easy to get low error on them. . . . .



Random Sample Consensus (RANSAC)

« RANSAC: Linear reqression bes
| on thee 2.
— Sample a small number of training examples. _ﬂ”’#".
* Minimum number needed to fit the model. e ©

* For linear regression with 1 feature, just 2 examples.

— Fit the model based on the samples.

* Fit a line to these 2 points.
e With ‘d’ features, you’ll need ‘d+1’ examples.

— Test how many points are fit well
based on the model.

— Repeat until we find a model that fits at
least the expected number of “inliers”.

* You might then re-fit based on the
estimated “inliers”.




Log-Sum-Exp for Brittle Regression

* To use log-sum-exp for brittle regression:

H)(W-\/’/ :MM’Z W’/X,- ‘ylf
- m”Zm,,,XELW“ Ji )i x§7§ Srce 2l Zmerz ~oT
_ l@(},(iexp(w )t Zerf(% ~x))  wsig ey-suen

10 Q I”‘fro )(Mq\/f

//"‘4/ Ovée- n Terms.



Log-Sum-Exp Numerical Trick

* Numerical problem with log-sum-exp is that exp(z,) might overflow.
— For example, exp(100) has more than 40 digits.

* Implementation ‘trick’: [ .t ﬁ:‘ May Zzé

lO‘j( ?(“/’(2—:)) = ’oq( ? CXIO(Z,' —p +ﬁ))

= o9 (2\ Cx,o(zj*/@)c)/,a (,@))

= leg ( exp(ﬁ) i' ezclg<z,-“'/4))

= lag Cexp(p)) 1 |aq(§exfz(z,*ﬁ)>
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Gradient Descent for Non-Smooth?

* “You are unlikely to land on a non-smooth point, so gradient descent
should work for non-smooth problems?”

— Consider just trying to minimize the absolute value function:

0)
— Norm(gradient) is constant when not at 0, so unless you are lucky enough to hit

exactly 0, you will just bounce back and forth forever.

— We didn’t have this problem for smooth functions, since the gradient gets
smaller as you approach a minimizer.

— You could fix this problem by making the step-size slowly go to zero, but you
need to do this carefully to make it work, and the algorithm gets much slower.



Gradient Descent for Non-Smooth?

)

* Counter-example from Bertsekas’ “Ngradient descent for a non-
smooth convex problem does not converge to a minimum.onlinear
Programming” where
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Figure 6.3.8. Contours and steepest ascent path for the function of Exercise
6.3.8.



