CPSC 340:
Machine Learning and Data Mining



“One of the most surprising and important stories of our time.”

—Ashlee Vance, author of Elon Musk

(Genius

The Mavericks Who Brought Al
to Google, Facebook, and the World
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Last Time: Linear Regression

We disg\ussed linear models:

her
= .;:Wj )(LS
“Multiply feature X;; by weight w;,,
add them to get y,”.
We discussed squared error function:

L= 12 Wiy - V)2
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— Minimize ‘f’ by equating gradient of ‘f” with zero.
Interactive demo:
— http://setosa.io/ev/ordinary-least-squares-regression
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http://setosa.io/ev/ordinary-least-squares-regression

Matrix/Norm Notation (MEMORIZE/STUDY THIS)

Parts 1&2: we used lists (not vectors): e.g. x; was a 1D list of length d

From now on: we use vectors, and typically assume that vectors are column-vectors

— We use ‘W’ as a “d times 1" vector containing weight ‘w;" in position j’.

— We use ‘y’ as an “n times 1” vector containing target ‘y;” in position i’

— We use ‘x’ as a “d times 1” vector containing features ‘j’ of example ‘i’.

* We’re now going to be careful to make sure these are column vectors.

— So ‘X" is a matrix with x." in row ‘I". (note the latter x is lowercase: it is not the ith row of X)

Recommended: Course Notation Guide (on website)
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* We showed how to express various quantities in matrix notation:
. . - 4 7
— Linear regression prediction for one example: \/, = w

— Linear regression prediction for all ‘'n” examples:

N
y:Xw
— Linear regression residual vector: r= )(W ~),

— Sum of residuals squared in linear regression model:
_ 2. ¢ 2 2
‘F(‘V> i E/ (;I"V,"()J' °)’;> = |[X. Ty /I

— Today: derive gradient and least squares solution in matrix notation.



Digression: Matrix Algebra Review

e Quick review of linear algebra operations we’ll use:

— If ‘@’ and ‘b’ are vectors, and ‘A’ and ‘B’ are matrices then:

G\TL) = loTO\

ha,ll:aTa\ S‘an'ﬂLy d\t L/<i

(A+8) =47+ 8" ALWAYS CHECK THAT
(AB) = BTA" DI MENSTONS MATCH
(A+B)(A+B)= AA + BA +AL +28 (i# oty yon did somaeFhig uror )
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Linear and Quadratic Gradients

* From these rules we have
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Linear and Quadratic Gradients

* From these rules we have (see post-lecture slide for steps):

P35 (0t = 3 =yl = 2w = w Xy + 44Ty
Vv\a‘/Yx A\ \/Cc"’or L, Scalas e
= %WTAW ""\/\/TL +c
e Gradient is given by: V) = Aw s D

* Using definitions of ‘A" and ‘b’ = XTXW - XTy
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Normal Equations for Least Squares Solution

|II

e Set gradient equal to zero to find the “critica
X ’Xw~ )(T‘/ = O

* We now move terms not involving ‘w’ to the other side:

XTYW:X-,\/

points:

From last time

For linear least squares we have:
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Normal Equations for Least Squares Solution

* Set gradient equal to zero to find the “critical” points:
i T
X Xw~)( Yy = 0
* We now move terms not involving ‘w’ to the other side:

Virtually only ML alg where

XT YW = X-l\/ you just get the optimal w

(and with one line of code!)

* Thisis a set of ‘d’ linear equations called the normal equations.

In linear algebra, the

— This a linear system like “Ax = b” from Math 152 (A is X™X, » is w confusingly)  veriables you agjust
y

are x (in ML, w)

* You can use Gaussian elimination to solve for ‘w’. _
In Python: numpy.linalg.solve

— In Julia, the “\” command can be used to solve linear systems:

Tfﬂ"h: W:(XIX)\(}('y) Preo(ic'f‘ }/l"cﬂl = %L,d*w



Incorrect Solutions to Least Squares Problem
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Least Squares Cost

Cost of solving “normal equations” X™Xw = X'y?

Forming X'y vector costs O(nd).

— It has ‘d” elements, and each is an inner product between ‘n’ numbers.
Forming matrix X™X costs O(nd?).

— It has d? elements, and each is an inner product between ‘n’ numbers.

Solving a d x d system of equations costs O(d?3).
— Cost of Gaussian elimination on a d-variable linear system.
— Other standard methods have the same cost.

Overall cost is O(nd? + d3).

— Which term dominates depends on ‘n” and ‘d’.



Least Squares Issues

* |ssues with least squares model: .
X is nx/J

— Solution might not be unique. -
: . : T 'S d xn
— It is sensitive to outliers. °
“I .
— |t always uses all features. and  XTX s dxd

— Data might so big we cannot store X'X.

* requires O(d?), which is bad (e.g. for 10 million features)
* Or you cannot afford the O(nd? + d3) cost.

— It might predict outside range of y; values.
* For some applications, only positive y; values are valid.

— It assumes a linear relationship between x; and v..



Non-Uniqueness of Least Squares Solution

 Why is the solution vector ‘w’ not unique?

— Imagine having two features that are identical for all examples.

— | can increase weight on one feature, and decrease it on the other,

without changing predictions. A _

opy
— In this setting, if (w,,w,) is a solution then (w,+w,, 0) is another solution.

— This is special case of features being “collinear”:
e One feature is a linear function of the others.

* But, any ‘w’ where V f(w) = 0 is a global minimizer of ‘.
— This is due to convexity of ‘', which we will discuss later.



Next Topic: Non-Linear Regression



Motivation: Non-Linear Regression
Many relationships are approximated well by linear function.
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Motivation: Non-Linear Regression

Many relationships are approximated well by linear function.

— But many are also highly non-linear.

e For example, you could have a “u-shape” when

too much/little is not good.
(effect of hyper-parameters usually looks like this)
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Motivation: Non-Linear Regression

 Many relationships are approximated well by linear function.

— But many are also highly non-linear.
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Motivation: Non-Linear Regression

* Many relationships are approximated well by linear function.

“geometric decay”
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— But many are also highly non-linear.

“exponential growth”
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Motivation: Non-Linear Regression

* Many relationships are approximated well by linear function.

— But many are also highly non-linear.

“Piecewise linear”: different pieces follow different linear functions.
(or be linear up to asymptote or phase transition)
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Motivation: Non-Linear Regression

 Many relationships are approximated well by linear function.

— But many are also highly non-linear. “Periodic” signals.
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Voltage [mv]

Motivation: Non-Linear Regression

* Many relationships are approximated well by linear function.

L
O

— But many are also highly non-linear.

Neuron action potential
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Adapting Counting/Distance-Based Methods

* Can adapt classification methods to perform non-linear regression:



Adapting Counting/Distance-Based Methods

* Can adapt classification methods to perform non-linear regression:

— Regression tree: tree with mean value or linear regression at leaves.
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Adapting Counting/Distance-Based Methods

* Can adapt classification methods to perform non-linear regression:
— Regression tree: tree with mean value or linear regression at leaves.

— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.
* Take CPSC 440.




Adapting Counting/Distance-Based Methods

* Can adapt classification methods to perform non-linear regression:

— Regression tree: tree with mean value or linear regression at leaves.

— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.

— Non-parametric models:

* KNN regression:
— Find ‘k’ nearest neighbours of X.
— Return the mean of the corresponding y;.

1OF
0.5}
ool °
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-1.0f

KNeighborsRegressor (k = 5, weights = 'uniform’)
T ° T T T

1
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Adapting Counting/Distance-Based Methods

* Can adapt classification methods to perform non-linear regression:

— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.

10F 7

— Non_pa ra metrlc mOdeIS: KNeighborsRegressor (k = 5, weights = 'uniform’)

1
— prediction
eoe data

* KNN regression.

0.5}

* Could be weighted by distance. 00| *
— Close points ‘j* get more “weight” wj. -0.5}

-1.0f
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KNeighborsRegressor (k = 5, weights = 'distance’)
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Adapting Counting/Distance-Based Methods

* Can adapt classification methods to perform non-linear regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.
— Non-parametric models:

* KNN regression.

* Could be weighted by distance. 1
* ‘Nadaraya-Watson’: weight all y; by distance to x.. =/




Adapting Counting/

* Can adapt classification meth

150 200 250

— Regression tree: tree with mea >

100

— Probabilistic models: fit p(x; | Y
— Non-parametric models:

50

* KNN regression. ' ' . '
* Could be weighted by distance. 7/ 5 10 15

* ‘Nadaraya-Watson’: weight all y; X

* ‘Locally linear regression’: for each x;, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)



Adapting Counting/Distance-Based Methods

* Can adapt classification methods to perform non-linear regression:

— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.
— Non-parametric models:

* KNN regression.
* Could be weighted by distance.
* ‘Nadaraya-Watson’: weight all y; by distance to x.

* ‘Locally linear regression’: for each x;, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)

— Ensemble methods:

e Can improve performance by averaging predictions across regression models.



Adapting Counting/Distance-Based Methods

* Applications of non-linear regression (we will see many more):

— Regression forests for fluid simulation:

— KNN for image completion:

 Combined with “graph cuts” and “Poisson blending”.
e See also “PatchMatch”.

— KNN regression for “voice photoshop”:

* Combined with “dynamic time warping” and “Poisson blending”.

e We will first focus on linear models with non-linear transforms.

— These are the building blocks for more advanced methods.


https://www.youtube-nocookie.com/embed/kGB7Wd9CudA
http://graphics.cs.cmu.edu/projects/scene-completion
https://vimeo.com/5024379
https://www.youtube-nocookie.com/embed/I3l4XLZ59iw

Why don’t we have a y-intercept?

— Linear model is ¥, = wx; instead of y, = wx; + w, with y-intercept w,.

— Without an intercept, if x, = 0 then we must predict y, = 0.
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Why don’t we have a y-intercept?

— Linear model is ¥, = wx; instead of y, = wx; + w, with y-intercept w,.

— Without an intercept, if x, = 0 then we must predict y, = 0.
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Adding a Y-Intercept (“Bias”) Variable

e Simple trick to add a y-intercept (“bias”) variable:
— Make a new matrix “Z” with an extra feature that is always “1”.

_0.1 I =01
X:[: zg\] 27[" (7,31
ﬂqu/s/ X

* Now use “Z” as your features in linear regression.
— We will use ‘v’ instead of ‘w’ as regression weights when we use features ‘Z’.

/)
y \/2/, 02*' Wo +lel
[ i l
WO , W |l
 So we can have a non-zero y-intercept by changing features.
— This means we can ignore the y-intercept to make cleaner derivations/code.



Motivation: Limitations of Linear Models

* On many datasets, y. is not a linear function of x.
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* A quadratic function would be a better fit for this dataset.



Non-Linear Feature Transforms

* Can we use linear least squares to fit a quadratic model?
N
2

y'. - Wy 1 M)(' + W, X

— Notice that this is a non-linear function of x; but a linear function of ‘w’

* So you can implement this by changing the features:
6,27 ~) 02 (02)1”
X-__— -05 2=|"! =05 C(0%?
| | | (/)1
L4 M)
y mf X x

— Fit new parameters ‘v’ under “change of basis”: solve Z'2v =Z'y.

* |t’s alinear functlon of w, but a quadratic function of x..
/ VZ-'VZ,+VZ +V;Z}
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W" ' \'V| )(i \’V X



Non-Linear Feature Transforms
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Non-Linear Feature Transforms

Regular x space Transformed x~2 space
100 - 100 A y =Xx"2
80 _ 80 m
60 -
60 -
>
40
40 -
20 -
20 -
O_
0 I 1 | I ! 1 | 1 | | 1 1 1 I I
-10.0 -75 -5.0 -25 00 25 50 7.5 10.0 0 20 40 60 80 100
X X2

* |t’s a linear function of w, but a quadratic function of x..
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Non-Linear Feature Transforms
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General Polynomial Features (d=1)

 We can have a polynomial of degree ‘p’ by using these features:

— b
O O e L
Z - ' Xl ()Q)l T ()Q)P
S i N
Y
L / Xin (Yn) - - (Xh)f‘

* There are polynomial basis functions that are numerically nicer:
— Such as Lagrange polynomials (see CPSC 303).



General Polynomial Features

3 ' 3

2

0

Degree 7
e
3
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0 5
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* If you have more than one feature, you can include interactions:

— With p=2, in addition to (x;;)? and (x;,)? you could include x.,x,.



“Change of Basis” Terminology

Instead of “nonlinear feature transform”, in machine learning
it is common to use the expression “change of basis”.

— The z; are the “coordinates in the new basis” of the training example.

“Change of basis” means something different in math:
— Math: basis vectors must be linearly independent (in ML we don’t care).
— Math: change of basis must span the same space (in ML we change space).

Unfortunately, saying “change of basis” in ML is common.

— When | say “change of basis”, just think “nonlinear feature transform”.



Linear Basis vs. Nonlinear Basis
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Change of Basis Notation (MEMORIZE)

* Linear regression with original features:

— We use ‘X" as our “n by d” data matrix, and ‘w’ as our parameters.
— We can find d-dimensional ‘w’ by minimizing the squared error:

{ =LYy

* Linear regression with nonlinear feature transforms:

— We use 7’ as our “n by k” data matrix, and ‘v’ as our parameters.
— We can find k-dimensional ‘v’ by minimizing the squared error:

F= 2 12v =y

* Notice that in both cases the target is still ‘y’.



Degree of Polynomial and Fundamental Trade-Off

* As the polynomial degree increases, the training error goes down.

M=0 M= 1 M=2 M=3
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* But generalization gap goes up: we start overfitting with large ‘p’.

* Usual approach to selecting degree: validation or cross-validation.



xkcd

Beyond Polynomial Transformations

e Polynomials are not the only possible transformation:
— Exponentials, logarithms, trigonometric functions, and so on.

— The right non-linear transform will vastly improve performance.
* Later we will see “deep learning” where you try to learn a transformation. "_0/ peﬂfxlf'c data
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Summary

Matrix notation for expressing least squares problem.
Normal equations: solution of least squares as a linear system.
— Solve (X™X)w = (XTy).

Solution might not be unique because of collinearity.

— But any solution is optimal because of “convexity”.

Non-linear transforms:

— Allow us to model non-linear relationships with linear models.

Next time: how to do least squares with a million features.



Linear Least Squares: Expansion Step
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Vector View of Least Squares

* We showed that least squares minimizes:

- i
F(W)“ 7'—_- “X\v")’”
* The 2 and the squaring don’t change solution, so equivalent to:

Fw) = \IXW‘“yH

* From this viewpoint, least square minimizes Euclidean distance
between vector of labels ‘y’ and vector of predictions Xw.



Bonus Slide: Householder(-ish) Notation

 Househoulder notation: set of (fairly-logical) conventions for math.
Use 9_{_14_/ lethers Fov scal scalars: a(,_l p= 39 7=

Véc ,57‘//457‘ (swercas@ !eHefs for vec fors. w- g.; 7 OJ / [ ]7 [ ) L ]

L)/‘SSW‘VMJ to be (o/umh vectors,
(/SC (irs\t/[abf M,Qpp/caue Ifﬂ"f’/s ‘Féf Maf’rtces. X)V) [,1/) A)g

Thndices Use

))) L\a'oer/
\/ V"‘Pom/n olp /(
S\Z”l’s use m)V\ A7P QV\J ? 1S O{oVIOMS ‘me (Mff’y"

Sets  uge S} )U vV
FV\I\(JL“’V\) Use P)()) and L\

When I wrile Xi 1

hean 9"0\L row '\ 0~P

a"{:! fV\W/\e Qa (OI\AWDV\ \/fbfdf
\_—__——\
w:fl« its  va lues."



Bonus Slide: Householder(-ish) Notation

 Househoulder notation: set of (fairly-logical) conventions for math:
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When does least squares have a unique solution?

We said that least squares solution is not unique if we have repeated
columns.

But there are other ways it could be non-unique:

— One column is a scaled version of another column.

— One column could be the sum of 2 other columns.

— One column could be three times one column minus four times another.

Least squares solution is unique if and only if all columns of X are
“linearly independent”.

— No column can be written as a “linear combination” of the others.

— Many equivalent conditions (see Strang’s linear algebra book):
e X has “full column rank”, X™X is invertible, XX has non-zero eigenvalues, det(X"X) > 0.

— Note that we cannot have independent columns if d > n.



