CPSC 340:
Machine Learning and Data Mining



Admin

* Assignment 2 dues this Friday.
* On Monday, we just finished part2, outlier detection and clustering.

* We're going to start using calculus and linear algebra a lot.
— You should start reviewing these ASAP if you are rusty.
— A review of relevant calculus concepts is here.
— A review of relevant linear algebra concepts is here.


https://www.cs.ubc.ca/~schmidtm/Courses/Notes/calculus.pdf
https://www.cs.ubc.ca/~schmidtm/Documents/2009_Notes_LinearAlgebra.pdf

Supervised Learning Round 2: Regression

* We're going to revisit supervised learning:
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* Previously, we considered classification:

— We assumed y; was categorical: y; = ‘spam’ or y; = ‘not spam’.
* Now we are going to consider regression:

— We allow y, to be numerical: y; = 10.34cm.
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Example: Dependent vs. Explanatory Variables

* We want to predict a numerical value given features:

— Does number of lung cancer deaths change with number of cigarettes?
— Does number of skin cancer deaths change with latitude?

okin cancer mortality versus State latitude
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Example: Dependent vs. Explanatory Variables

 We want to predict a numerical value given features:
— Do people in big cities walk faster?

— |s the universe expanding or shrinking or staying the same size?
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Example: Dependent vs. Explanatory Variables

 We want to predict a numerical value given features:

— Does number of gun deaths change with gun ownership?

— Does number violent crimes change with violent video games?

Gun ownership vs. gun deaths, by state
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Example: Dependent vs. Explanatory Variables

 We want to predict a numerical value given features:
— Does higher gender equality index lead to more women STEM grads?

* Note that we are doing supervised learning:
0.85 Finland e« Norway
— Trying to predict value of 1 variable (the ‘y; values).
(instead of measuring correlation between 2).
* Supervised learning does not give causality: " e e
— OK: “Higher index is correlated with lower grad %”.  *"lot il e ™
. l( . . . ” .ngawM '/.SI-.ava-\a ' \YG‘
— OK: “Higher index helps predict lower grad %”. - et i~
— BAD: “Higher index leads to lower grads %”. i
* People/media get these confused all the time, be careful! e
* There are lots of potential reasons for this correlation. - p” - = e -

Women Among STEM Graduates (%)



Correlation and Causation
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Handling Numerical Labels

* One way to handle numerical y;: discretize.
— E.g., for ‘age’ could we use {‘age < 20’, ‘20 < age < 30/, ‘age > 30’}.
— Now we can apply methods for classification to do regression.
— But coarse discretization loses resolution.

— And fine discretization requires lots of data (“coupon collecting”).

* There exist regression versions of classification methods:

— Regression trees, neighbour-based methods, and so on.

* Today: one of oldest, but still most popular/important methods:
— Linear regression based on squared error.
— Interpretable and the building block for more-complex methods.



Least Squares with one Feature



Linear Regression in 1 Dimension

Assume we only have 1 feature (d = 1):

— E.g., x; is number of cigarettes and y; is number of lung cancer deaths.

Linear regression makes predictions J; using a linear function of x::
A
>/,- = WX,

The parameter ‘w’ is the weight or regression coefficient of x.
— We are temporarily ignoring the y-intercept.
As x. changes, slope ‘w’ affects the rate that y. increases/decreases:

— Positive ‘w’: §; increase as x; increases.
— Negative ‘w’: J; decreases as x; increases.



Linear Regression in 1 Dimension
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Aside: terminology woes

* Different fields use different terminology and symbols.

— Data points ‘i’ = objects = examples = rows = observations.

— Inputs x; = predictors = features = explanatory variables= regressors =
independent variables = covariates = columns.

— Outputs y, = outcomes = targets = response variables = dependent
variables (also called a “label” if it’s categorical).

— Regression coefficients ‘w’ = weights = parameters = betas.

* With linear regression, the symbols are inconsistent too:

— In ML, the data is X and y, and the weights are w.
— In statistics, the data is X and y, and the weights are B.
— In optimization, the data is A and b, and the weights are x.



Linear Regression Training Challenges

* Linear regression makes predictions by using:

4 rv
>/|' = WX

x.
e To train a linear regression model, we need to find Weight/slop‘e ‘W’

* Challenges in finding ‘w’ compared to fitting a decision stump:
— Cannot enumerate all possible values of ‘w’ (could be any real number).

* |nstead, we will use calculus to find the best ‘wW’.

— It is unlikely that a line will go exactly through many data points.
* Due to noise, relationship not being quite linear or just floating-point issues.
* So it does not make sense to find the ‘w’ minimizing how many times y; # ;.



Residuals and Sum of Squared Residuals

* The residual is the difference between our prediction and true value:

\A_
(A

— This can be positive or negative.
— If this is close to zero, then our prediction is close to the true value.

* We typically look for a ‘w’ that makes residuals close to zero.

— For example, many models minimize the sum of the squared residuals:
N 24 (0. 1+._.+(/\- 2
(‘/. ’y.) (71 74) YA 7'\7
* The smaller we make this, the smaller the distance between our predictions and targets.
— Plugging in y; = wx; for the case of linear regression, we get:

(wx, = 7')’4(W&_yzy+ ot (wy~ym)?

* The linear least squares model minimizes this function to choose the slope ‘w’.



Linear Least Squares Objective Function

* Linear least squares sets ‘W’ is to minimize sum of squared residuals:
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* If thisis zero, we exactly fit data. If this small, line is “close” to data.
* There are some justifications for choosing this function ‘f’.

— A probabilistic interpretation is coming later in the course.

* But usually, we choose this ‘f’ because it is easy to minimize.



Linear Least Squares Objective Function

* Linear least squares sets ‘W’ is to minimize sum of squared residuals:
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Linear Least Squares Objective Function

* Linear least squares sets ‘W’ is to minimize sum of squared residuals:
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Minimizing a Differential Function

 Math 101 approach to minimizing a differentiable function ‘f’:

1. Take the derivative of ‘f’.
2. Find points ‘w’ where the derivative f’(w) is equal to 0.
3. Choose the smallest one
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Digression: Multiplying by a Positive Constant

Note that this problem:

=2 Gox =)’

Has the same set of minimizers as this problem:
N
= | 2
‘P("") Eé(\i\/)(,'-\/,’)
And these also have the same minimizers:
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| can multiply ‘f* by any positive constant and not change solution.
— Derivative will still be zero at the same locations.
— We will use this trick a lot!

(Quora trolling on ethics of this)



https://www.reddit.com/r/AIethics/comments/4qvi4m/is_it_ethical_to_remove_constants_from_your_loss/

Deriving Least Squares Solution

: “~lw; yi t Yi2j (€X’0 o i)

n )
WQX,'Z —}12’2wx;7; +-§,£'y;z (s/a/f' Sum uf )

— % z Z p: ity dVpved Torms
12 > | 2 (remme factors fo
_— _ o i 2 remove TacTos ™
_5 1:2, X.' w I_:ZIX,)/, + 2 éyl Swms That do pof AV'MJ
1=/ on CYaM,Ie /l")
— .\ﬂ? a Wé <+ C
2
7;/(6 AcriVol"[' ve - ‘(/(W) = wa - L) + O Zn
i (xisfs if we
SC#VW 'F W) 0 q/lcl bvlvm? 9IV€j W_‘ L, é X,y :)que a Nonzerd

{C’qﬂms )



Finding Least Squares Solution

* Finding ‘w’ that minimizes sum of squared errors:
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e Let’s check that this is a minimizer by checking second derivative:
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— Since (anything)? is non-negative, we have f”’(w) > 0.
— |If at least one feature is not zero, then f”’(w) > 0 and ‘w’ is a minimizer.



The First Publication of Least Square

In 1809 Carl Friedrich Gauss published his method of
calculating the orbits of celestial bodies. In that work he
claimed to have been in possession of the method of least
squares since 1795.8 This naturally led to a priority
dispute with Legendre. However, to Gauss's credit, he
went beyond Legendre and succeeded in connecting the
method of least squares with the principles of probability
and to the normal distribution.

https://en.wikipedia.org/wiki/Least_squares



https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Normal_distribution

Next Topic: Least Squares in d-Dimensions



Motivation: Combining Explanatory Variables

Smoking is not the only contributor to lung cancer.

— For example, there environmental factors like exposure to asbestos.
How can we model the combined effect of smoking and asbestos?
A simple way is with a 2-dimensional linear function:
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We have a weight w, for feature ‘1’ and w, for feature 2’
A
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Linear Regression in 2-Dimensions

 Linear model:
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Linear Regression in 2-Dimensions

 Linear model:

A
Yi= WX T W Xig
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Linear Regression in d-Dimensions

* If we have ‘d’ features, the d-dimensional linear model is:
N

)/( = W,)(“'\L W, Xz t Ws X3 +--- -/-WJX,-J

— In words, prediction is a weighted sum of the features.
* We can re-write this using summation notation as:

d

A—

Y= 2w
5\

* We can again choose ‘W’ to minimize the sum of squared residuals:

— 1 LS ~ 3
f(w'>w2>“'>W‘)“%é(§%xj ),,)
(= \/;\_\/

— We can use multi-variable calculus to minimize ‘f” with respect to the parameters w;, w,,..., wj.



Minimizing Multi-Variable Differentiable Function

* With one variable, we “find ‘w’ where the derivative is equal to 0”.
* The generalization of this idea to when we have ‘d’ variables:

— “Find ‘W’ where the gradient vector is equal to the zero vector”.

e Gradient is a vector with partial derivative ‘j" in position .
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Review: Partial Derivative

: C : : 0
* Partial derivative with respect to w; (written 6_\/{:- :
J

— Derivative with respect to w;, keeping all others variables fixed.
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Partial Derivative for Least Squares

* Partial derivative with respect to w, for least squares with n=1:
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Partial Derivative for Least Squares

* Partial derivative with respect to w; for least squares with n=1:
F g1 = £ (2w, = 3
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* Partial derivative with respect to w; for least squares for general ‘n’
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Gradient Vector for Least Squares

 The gradient vector is the concatenation of all partial derivatives:

— At ‘w’, Vf(w) is in the direction with steepest ascent.
— At minimizers we have Vf(w) = 0 (slope is O every direction).
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Gradient Vector for Least Squares

* The gradient vector is the concatenation of all partial derivatives:

— At ‘W, Vf(w) is in the direction with steepest ascent.
— At minimizers we have Vf(w) = 0 (slope is O every direction).

* For linear least squares we have:

9?(\ ’"IZ(%W)XM y,)x,|
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— So to train a least squares model, we need this to equal the zero vector.



Fitting a Linear Least Squares Model
e Setting gradient to equal O vector for linear least squares gives:
2(§WX Y’)Xll - D
F)0 [(—=> (% 1 = 0

2 (éw)x\) y,)le =
— This is a set of ‘d’ linear equations, with ‘d” unknowns (wy, w,,..., wy).

* You can solve these equations using Gaussian elimination (linear algebra).

— Claim: all ‘w” with Vf(w) = 0 are minimizers (we will discuss why later).

* May be more than one ‘w’ satisfying this, but all have the same minimum error.



Example Applications in Computational Biology

Article | Open access | Published: 08 February 2023

Dissecting cell identity via network inference andin

silico gene perturbation

Kenji Kamimoto, Blerta Stringa, Christy M. Hoffmann, Kunal Jindal, Lilianna Solnica-Krezel & Samantha

A. Morris &

Nature 614, 742-751 (2023) | Cite this article

82k Accesses | 61 Citations | 325 Altmetric | Metrics

machine-learning model. CellOracle builds a model that predicts the
expression of atarget gene onthe basis of the expression of regulatory
candidate genes:

n
xj= 2 b+ c,
i=0

where x; is single target gene expression and x; is the gene expres-
sion value of the regulatory candidate gene that regulates gene x;. b, ;
is the coefficient value of the linear model (but b;;=0ifi=j),andc
istheintercept for thismodel. Here, we use the list of potential regula-
tory genes for each target gene generated in the previous base GRN
construction step (ii).



Next Topic: Matrix Notation



Matrix Notation: Motivation

* We have expressed linear least squares with summation notation:
n
£ lw wyyeywy) = 2(2‘“‘ )
e But you often see it equivalently expressed using matrix notation:

Fw)=||Xw "y”z

 Why do people use matrix notation?
— Can be easier to understand and lead to “nicer” code (once you are used to it).

— Makes it easier to see some properties (like the connection to norms above).
* Or derive properties, like showing that all ‘w’ with V'f(w) = 0 are minimizers.

— Can lead to code with fewer bugs.
* Since you can use existing implementations of standard operations.

— Can lead to faster code.
* |f we are using packages that implement fast matrix operations.



Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* In this course, vectors are assumed to be co
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Matrix Notation (MEMORIZE/STUDY THIS)

* Linear regression prediction for one example in matrix notation:

T
\/,' - W X
e Why? , ,
y’,- wl)(,.' +\”.zxi1+"' + W Xiq = [\4/' W.l \A/c|j l))((";_J = \/V)(’-
T
w Xid
X.
* Using 9; = w!x;, we can re-write sum of squared residuals as:
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Matrix Notation (MEMORIZE/STUDY THIS)

* Linear regression prediction for all ‘n” example in matrix notation:
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Matrix Notation (MEMORIZE/STUDY THIS)

* Linear regression residual vector in matrix notation:
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Matrix Notation (MEMORIZE/STUDY THIS)

e Different ways to write sum of residuals squared in linear regression model:

tw) = g(%w,-xb- )
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* So least squares minimizes L2-norm between target and predictions.



Summary

* Regression considers the case of a numerical y..
* Least squares is a classic method for fitting linear models.

— Minimizes sum of squared residuals (prediction and true value difference).
— With 1 feature, it has a simple closed-form solution.

— Can be generalized to ‘d’ features, taking linear weighting of features.
* Gradient is vector containing partial derivatives of all variables.
* Matrix notation for expressing least squares problem: | | Xw —vy| |?.
* Next time:
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* |In Smithsonian National Air and Space Museum (Washington, DC):

£ R g —— Scientists found in the meteorite trapped gas whose
4 composition was nearly identical to the Martian
ik / <% {| atmosphere as measured by the Viking Landers.

|| This graph compares the concentration of gases
| o || in the Martian atmosphere (vertical axis) with their

concentration in the meteorite (horizontal axis). If
1 11 they matched perfectly, the points would fall on the
diagonal line. The close match strongly suggests
that this meteorite came from Mars.
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Causality, Interventions, and RCTs

* What if you want to assess causality?

* You can sometimes do this by collecting data in specific ways.

— You need to set the values of the features “by intervention”.
* You do not passively observe, you *set* them and then watch the effect.

— Most common way this is done is with a randomized control trial.
e Say you want to evaluate the effectiveness of a pill for a certain disease.
* You get a bunch of people with the disease for training data.
* You randomly decide which of the people will take the pill, and which won’t.

* |f the people who got the pill did better/worse on average, it was caused by the pill.
— The randomness takes away the possibility that certain groups are more/less likely to take the pill.
— Group not taking the pill often given placebo, removing effect of “feel like you are being treated”.
— Often the researchers do not even get to know who took the pills until after the study is over.
» “Double blind”, to avoid the researchers giving hints about who got the pill.



https://en.wikipedia.org/wiki/Randomized_controlled_trial

Converting Partial Derivative to Matrix Notation

* Re-writing linear least squares partial derivative in matrix notation:
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Converting Gradient to Matrix Notation

* Re-writing linear least squares gradient in matrix notation:
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