
CPSC 320 Notes: Memoization and Dynamic Programming, Part 2

October 21, 2018

1 If I Had a Nickel for Every Time I Computed That

1. Rewrite CCC, this time storing—which we call "memoizing", as in "take a memo about that"—each
solution as you compute it so that you never compute any solution more than once.

CCC(n):
Create a new array Soln of length n // using 1-based indexing

Initialize each element Soln[i] for 1 <= i <= n to: _______________________

Return CCCHelper(n, Soln)

CCCHelper(n, Soln):

If n < 0:

Return infinity

Else, If n = 0:

Return _______________

Else, n > 0: // FILL IN THE REMAINING CASE

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


2. Consider this portion of the recursion tree for CCCHelper called on 81, where two calls to CCCHelper
with the argument 55 are italicized:

Since we draw recursion trees with the first recursive call on the left, the left subtree finishes before the
middle, which finishes before the right. Therefore, the left-hand 55 node is the first call to CCCHelper
with the value 55. The right-hand 55 node is one (of many!) calls to CCCHelper with the value of 55
that happen after that first call.

Give a Θ-bound on the runtime of calls to CCCHelper like the one on the right-hand 55 node that are
on a value x (where 1 ≤ x ≤ n) and are not the first call to CCCHelper on that value.

3. Not counting the cost of any other call’s first computation, give a good Θ-bound on the runtime of
calls like the one on the left-hand 55 node that are the first computation of CCCHelper on a value x.

(Note: this is just like the analysis we did of QuickSort’s recursion tree where we labelled the cost of a
node (call) without counting the cost of subtrees (recursive calls), except we do count the inexpensive
recursive calls that are not first computations.)

4. Give a Θ-bound on the total cost of all these first computations. (That is, sum up the first compu-
tations to get the total work in the tree.)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


2 Growing from the Leaves

The technique from the previous part is called "memoization". Turning it into "dynamic programming"
requires changing the order in which we consider the subproblems.

Here’s that recurrence again, renamed to Soln:

Soln(i) = infinity for i < 0

Soln(0) = 0

Soln(i) = 1 + min(Soln(i-25), Soln(i-10), Soln(i-1)) otherwise

1. If we were to store this in an array named Soln, which entries of the array need to be filled in before
we’re ready to compute the value for Soln[i]?

2. Give a simple order in which we could compute the entries of Soln so that all previous entries needed
are already computed by the time we want to compute a new entry’s value.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


3. Take advantage of this ordering to rewrite CCC without using recursion:

// Note: It’s handy to pretend Soln has 0 and negative entries.
// We use SolnCheck to do that.
SolnCheck(Soln, i):

If i < 0: Return _______________

Else If i = 0: Return _______________

Else: Return Soln[i]

CCC(n):
Create a new array Soln of length n // using 1-based indexing

For i = ______________________________________:

Soln[i] = the ____________ of:

_______________________________________,

_______________________________________, and

_______________________________________.

Return Soln[n] // assumes n > 0

4. Both the dynamic programming and memoized versions of CCC run in the same asymptotic time.
Asymptotically in terms of n, how much memory do these versions of CCC use?

5. Imagine that you only wanted the number of coins returned from CCC. In the dynamic programming
version how much of the Soln array do you really need at one time? If you take advantage of this,
how much memory does it use, asymptotically?

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


3 Challenge: Foreign Change

Design a new version of CCC so that it handles foreign currencies where you receive the target amount n
and an array of coin values [c1, c2, . . . , ck]. Assume that the penny is always available. (So, for pennies,
dimes, and quarters, the array would look like [10, 25].)

Analyse the runtime of your algorithm in terms of n and k.
TAKE IT STEP BY STEP! That means to write trivial and small examples, describe the input and

output, design an inefficient recursive version, memoize it, and transform that into a dynamic programming
solution.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


4 More Challenge

1. How would you alter your algorithm for the "foreign change" problem if pennies were not guaranteed
to be available? What unusual cases could arise in solutions?

2. Modify the dynamic programming solution to return both the number of coins used and the solution
while using only constant memory. Hint: it helps when storing partial solutions that you don’t care
what order you give the coins out in.

3. Count the number of different ways to make n cents in change using quarters, dimes, nickels, and
pennies (again, using memoization and/or dynamic programming).

(a) First, assume that order matters (i.e., giving a penny and then a nickel is different from giving
a nickel and then a penny).

(b) Then, assume that order does not matter.

4. Solve the "minimum number of coins" change problem if you do not have an infinite supply and
instead are given the available number of each coin as a parameter [num_quarters, num_dimes,
num_nickels]. (Assume an infinite number of pennies.)

5. Prove that you can take at least one greedy step if the foreign change algorithm takes only two distinct
coin values [c1, c2], and n is at least as large as the least common multiple of c1 and c2.

6. Extend this "least common multiple" observation to more coins.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	If I Had a Nickel for Every Time I Computed That
	Growing from the Leaves
	Challenge: Foreign Change
	More Challenge

