CPSC 320 Little-o/Little- ω Overview

November 2, 2018

Big O, Θ , and Ω are **roughly** equivalent to asymptotic \leq , =, and \geq comparisons on functions. That naturally leaves analogues of < and > to define.

1 Formal Definitions via Logic

A function f is little-o of another function g if f grows *strictly slower* than g. That is, $f \in o(g)$ exactly when for every positive real numbers c, there is a positive integer n_0 such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$. Or, stated symbolically:

$$f \in o(g) \equiv \forall c \in \mathbf{R}^+ \exists n_0 \in \mathbf{Z}^+ \forall n \ge n_0, f(n) \le c \cdot g(n)$$

This is almost exactly like the big-O definition: the difference is that the quantifier in front of c in the definition of o is universal, whereas it is existential in the definition of o. So for **every** possible scaling factor c (including very small ones like $\frac{1}{10000}$), once n is large enough, g(n) is **still** bigger than f(n).

Little- ω is exactly the converse definition: a function f is little-o of another function g if f grows strictly faster than g. That is:

$$f \in \omega(g) \equiv \forall c \in \mathbf{R}^+ \exists n_0 \in \mathbf{Z}^+ \forall n \ge n_0, f(n) \ge c \cdot g(n)$$

Note that $f(n) \in \omega(g(n))$ exactly when $g(n) \in o(f(n))$.

2 Formal Definitions via Limits

When we want to know how two functions compare asymptotically, a **very** handy tool is to compare what happens to f(n)/g(n) when n is very large. In particular, in the cases where the limit is well-defined, we can apply the following theorem:

- 1. If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$, then $g(n) \in o(f(n))$ and $f(n) \in \omega(g(n))$.
- 2. If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ for some constant real number c>0, then $f(n)\in\Theta(g(n))$ (and so $g(n)\in\Theta(f(n))$).
- 3. If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$, then $f(n) \in o(g(n))$ and $g(n) \in \omega(f(n))$. (equivalently, this means $\lim_{n\to\infty} \frac{g(n)}{f(n)} = \infty$.)

It turns out we can prove that the limit definitions are equivalent to the logical definitions above (since limits also have quantifier-based definitions!). With a bit of calculus (remind yourself of "L'Hôpital's Rule"), using the limits technique is often **much** easier than using the logical definitions.

Try these out to compare: n+3, 3n, n^2-1 , and 2^n .

Note that if the limit does not exist, then it does not mean we can not use one of our asymptotic notations; it simply means we will have to use the logic definition to determine whether or not they are

comparable. For instance, if f(n) = n, and g(n) oscillates between n/2 and 2n, then $\lim_{n\to\infty} f(n)/g(n)$ does not exist (the value oscillates between 1/2 and 2 without ever settling down near one or the other extreme). However $f \in \Theta(g)$.

3 Little-o is not really Big-O minus Θ

A common misconception is to assume that if $f \in O(g)$, and $f \notin \Theta(g)$, then $f \in o(g)$. This is not in fact correct: consider the function $n|\sin n|$.

- Because $|\sin n|$ oscillates between 0 and 1, $n|\sin n|$ oscillates between 0 and n. If we compare that to n asymptotically, we find that $n|\sin n| \in O(n)$ (with the constant scaling factor c=1, in fact!)
- However $n|\sin n| \notin \Theta(n)$ and $n|\sin n| \notin o(n)$. (In the case of the limit, the ratio of these two functions is just $|\sin n|$ which oscillates between 0 and 1 and so does not approach either value or anything in between!)

So the analogy of comparing o, O, Θ, Ω and ω to $<, \le, =, \ge,$ and > respectively is useful but not exact.