CPSC 320 Little-o/Little- ω Overview

November 2, 2018

Big O, Θ, and Ω are roughly equivalent to asymptotic $\leq,=$, and \geq comparisons on functions. That naturally leaves analogues of $<$ and $>$ to define.

1 Formal Definitions via Logic

A function f is little-o of another function g if f grows strictly slower than g. That is, $f \in o(g)$ exactly when for every positive real numbers c, there is a positive integer n_{0} such that for all $n \geq n_{0}, f(n) \leq c \cdot g(n)$. Or, stated symbolically:

$$
f \in o(g) \equiv \forall c \in \mathbf{R}^{+} \exists n_{0} \in \mathbf{Z}^{+} \forall n \geq n_{0}, f(n) \leq c \cdot g(n)
$$

This is almost exactly like the big- O definition: the difference is that the quantifier in front of c in the definition of o is universal, whereas it is existential in the definition of O. So for every possible scaling factor c (including very small ones like $\frac{1}{10000}$), once n is large enough, $g(n)$ is still bigger than $f(n)$.

Little- ω is exactly the converse definition: a function f is little-o of another function g if f grows strictly faster than g. That is:

$$
f \in \omega(g) \equiv \forall c \in \mathbf{R}^{+} \exists n_{0} \in \mathbf{Z}^{+} \forall n \geq n_{0}, f(n) \geq c \cdot g(n)
$$

Note that $f(n) \in \omega(g(n))$ exactly when $g(n) \in o(f(n))$.

2 Formal Definitions via Limits

When we want to know how two functions compare asymptotically, a very handy tool is to compare what happens to $f(n) / g(n)$ when n is very large. In particular, in the cases where the limit is well-defined, we can apply the following theorem:

1. If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$, then $g(n) \in o(f(n))$ and $f(n) \in \omega(g(n))$.
2. If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c$ for some constant real number $c>0$, then $f(n) \in \Theta(g(n))$ (and so $g(n) \in \Theta(f(n))$).
3. If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$, then $f(n) \in o(g(n))$ and $g(n) \in \omega(f(n))$. (equivalently, this means $\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=$ ∞.)

It turns out we can prove that the limit definitions are equivalent to the logical definitions above (since limits also have quantifier-based definitions!). With a bit of calculus (remind yourself of "L'Hôpital's Rule"), using the limits technique is often much easier than using the logical definitions.

Try these out to compare: $n+3,3 n, n^{2}-1$, and 2^{n}.
Note that if the limit does not exist, then it does not mean we can not use one of our asymptotic notations; it simply means we will have to use the logic definition to determine whether or not they are
comparable. For instance, if $f(n)=n$, and $g(n)$ oscillates between $n / 2$ and $2 n$, then $\lim _{n \rightarrow \infty} f(n) / g(n)$ does not exist (the value oscillates between $1 / 2$ and 2 without ever settling down near one or the other extreme). However $f \in \Theta(g)$.

3 Little- o is not really $\operatorname{Big}-O$ minus Θ

A common misconception is to assume that if $f \in O(g)$, and $f \notin \Theta(g)$, then $f \in o(g)$. This is not in fact correct: consider the function $n|\sin n|$.

- Because $|\sin n|$ oscillates between 0 and $1, n|\sin n|$ oscillates between 0 and n. If we compare that to n asymptotically, we find that $n|\sin n| \in O(n)$ (with the constant scaling factor $c=1$, in fact!)
- However $n|\sin n| \notin \Theta(n)$ and $n|\sin n| \notin o(n)$. (In the case of the limit, the ratio of these two functions is just $|\sin n|$ which oscillates between 0 and 1 and so does not approach either value or anything in between!)

So the analogy of comparing o, O, Θ, Ω and ω to $<, \leq,=, \geq$, and $>$ respectively is useful but not exact.

