CPSC 320 Notes, Asymptotic Analysis

September 17, 2018

1 Comparing Orders of Growth for Functions

For each of the functions below, give the best ©® bound you can find and then arrange these functions by
increasing order of growth.

n+n? A
56m + 4 1.5nlgn
n! Inn
2
2nlog(n?) Toen

(nlgn)(n+1) (n+1)!

1.6%" tricky, but doable!

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. @®&®
For license purposes, the author is the University of British Columbia.


http://creativecommons.org/licenses/by-nc/4.0/

2 Functions/Orders of Growth for Code

Give and briefly justify good © bounds on the worst-case running time of each of these pseudocode
snippets dealing with an array A of length n. Note: we use 1-based indexing; so, the legal indexing of A is:
A[l], A[2],. .., An].

Finding the maximum in a list:

Let max = -infinity
For each element a in A:
If max < a:
Set max to a
Return max

"Median-of-three" computation:

Let first = A[1]
Let last = A[n]
Let middle = A[floor(n/2)]

If first <= middle And middle <= last:
return middle

Else If middle <= first And first <= last:
return first

Else:
return last

Counting inversions:

Let inversions = 0
For each index i from 1 to n:
For each index j from (i+l) to n:
If ali]l > alj]:
Increment inversions
Return inversions

Repeated division:

Let count 0

While n >
count = count + 1
n = floor(n/2)

Return count

o

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. @®&®
For license purposes, the author is the University of British Columbia.


http://creativecommons.org/licenses/by-nc/4.0/

3 Progress Measures for While Loops

Assume that FindNeighboringInversion(A) consumes an array A and returns an index i such that A[i]
> A[i+1] or returns -1 if no such inversion exists. Let’s work out a bound on the number of iterations of
the loop below in terms of n, the length of the array A.

Let i = FindNeighboringInversion(4)
While i >= O:

Swap A[i] and A[i+1]

Set i to FindNeighboringInversion(A)

1. Give and work through two small inputs that will be useful for studying the algorithm. (What
is "useful"? Try to find one that is simply common /representative and one that really stresses the
algorithm.)

2. Define an inversion (not just a neighboring one), and sketch the key points in a proof that if any
inversion exists, a neighboring inversion exists.

3. Give upper- and lower-bounds on the number of inversions in A.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. @®&®
For license purposes, the author is the University of British Columbia.


http://creativecommons.org/licenses/by-nc/4.0/

4. Give a "measure of progress" for each iteration of the loop in terms of inversions. (IL.e., how can we
measure that we’re making progress toward terminating the loop?)

5. Give an upper-bound on the number of iterations the loop could take.

6. Prove that this algorithm sorts the array A.

4 Challenge Problem

1. Give the best © bound you can find for \/ﬁ\/H and then arrange it with respect to the other functions
from the "[I" section.

2. Imagine that rather than FindNeighboringInversion, we’d used FindInversion, which returns two
arbitrary indices (i, j) such that 1 < j but A[i] > A[j] and then in our loop swapped A[i] and
ATj]. Could the loop run forever? If it terminates, would the array be sorted? Can you upper- and
lower-bound the loop’s runtime? Comparing the "neighboring" version to this version, how important
is it which inversion is found?

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. @®&®
For license purposes, the author is the University of British Columbia.


http://creativecommons.org/licenses/by-nc/4.0/

	Comparing Orders of Growth for Functions
	Functions/Orders of Growth for Code
	Progress Measures for While Loops
	Challenge Problem

