
CPSC 320 Notes: What’s in a Reduction?

November 7, 2018

To reduce a problem A to another problem B, we typically proceed as follows: give one algorithm that
takes a (legal) instance a of A and converts it into a legal instance b of B and a second algorithm that takes
the corresponding solution sb to b and transforms it into a solution sa to a. (The second algorithm can use
whatever bookkeeping information it needs from the first.)

We’ve used reductions to solve new problems based on problems we could already solve. For example,
reducing hospital/intern matching to stable marriage.

But. . . there’s another way to use reductions. A more sinister way.1

1 Boolean Satisfiability

Boolean satisfiability (SAT) is—as far as Computer Scientists know—a hard problem. In the version of
SAT we discuss here, you’re given a propositional logic expression like: (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x5) ∧ (x1) ∧
(x2∨x3∨x5)∧ (x2∨x3) and must determine whether any assignment of truth values to variables (the xi’s)
makes the expression true, which we call satisfying the expression.

Formally, we’ll say that an instance of SAT has n variables x1, x2, . . . , xn and a statement that is a
conjunction (an "and" connected by ∧) of c clauses. Each clause is a disjunction (an "or" connected by ∨)
of literals, and each literal is either a variable xi or its negation xi. (For convenience, we’ll insist on using
the variables x1, x2, . . . xn for some n, without skipping any.) A solution to SAT is simply YES (there is an
assignment that makes the expression true) or NO (there isn’t).

1. Is the example SAT instance above (in the first paragraph of this section) satisfiable? If not, explain
why not. If so, prove it by giving an assignment that makes the statement true.

1Well, OK. Just another way.
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2. Give the trivial instance(s) of SAT.2

3. Build a small but non-trivial instance of SAT and check whether it’s satisfiable.

4. If I gave an assignment of truth values to the variables and said it satisfies the expression, how long
would it take (in terms of the length of the input, i.e., the total number of literals in all the clauses)
to test whether my statement is true?

5. A brute force algorithm could make a list of the variables x1, . . . , xn in the problem, try every assign-
ment of truth values to these variables, and return YES if any satisfies the expression or NO otherwise.
Asymptotically, how many truth assignments might this algorithm try (in terms of n)?

2The conjunction ("and") of zero conjuncts is true. The disjunction ("or") of zero disjuncts is false. Why? These are the
identity elements for "and" and "or".
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2 3-SAT and SAT

The 3-SAT problem is just like SAT, except every clause must be exactly of length 3. Let’s build a
reduction from SAT to 3-SAT. (So, we’re solving SAT in terms of 3-SAT.)

1. If you really wanted a clause like (x5) in 3-SAT, how could you represent it? Hint: one variable can
appear multiple times in a clause. Challenge: How can you do it if one variable is not allowed to
appear multiple times?

2. If you really wanted a clause like (x1 ∨ x2 ∨ x3 ∨ x4) in 3-SAT, how could you represent it? Note that
the 3-SAT instance you create must be satisfiable if and only if the original SAT instance was. Hint:
Create a brand new variable, y1.3 y1 must be true or false, and we don’t care which, since it’s not
actually part of the original problem. Could you force some of the literals in the original clause to be
true when y1 is true and some to be true when y1 is false?

3. Extend your 4-literal clause plan above to a 5-literal clause like (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5).

4. Extend your 5-literal clause plan to a 100-literal clause. How could you represent such a clause in
3-SAT?

5. Give a reduction from SAT to 3-SAT.

3y1 must really be xn+1 since all the variables look like xi, but it reads better with a distinctive name.
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3 What does a reduction tell us?

Considering a reduction to be two algorithms that "connect" one problem to another, as in this diagram:

1. SCENARIO #1 (what we’ve done up till now): Say our reduction’s two algorithms take
O(f(n)) time and we have a solution to the underlying problem problem that also takes O(f(n))
time. What do we know about the original problem?

2. SCENARIO #2 (what we usually think of NP-completeness as meaning): Say our re-
duction’s two algorithms take O(g(n)) time and we know that there is no solution to the original
problem that runs in O(g(n)) time. What do we know about the underlying problem? Why?

3. SCENARIO #3 (what NP-completeness technically means): Say that we know (which we
do) that if SAT can be solved in polynomial time, then any problem in the large set called "NP" can
also be solved in polynomial time. What does our redution from SAT to 3-SAT tell us? Why?
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4 What does NP-completeness tell us?

Figure 1: By Béria L.
Rodríguez, CC BY-SA
3.0

Most Computer Scientists think "P 6= NP". If that’s true, then there is no correct,
deterministic algorithm for any NP-complete problem that runs in polynomial time.4

Specifically: if a problem is NP-complete, it’s hopeless to write an algorithm that
scales to arbitrarily large problem sizes and definitely, precisely solves every possible
instance of those sizes correctly for exactly that problem.

1. Imagine you visit the largest, seated, outdoor, bronze Buddha in the world.
It’s pretty impressive. . . but presumably there’s a larger standing (reclining?),
outdoor, bronze Buddha; a larger seated, indoor, bronze Buddha; and a
larger, seated, outdoor Buddha in some other material.

List as many ways as you can think of to "get around" an NP-complete prob-
lem.

2. Go solve a big NP-complete problem in your browser, on your phone, and laugh
in the face of NP-completeness: http://www.msoos.org/2013/09/minisat-in-your-browser/.

Note, however: There really are an enormous number of NP-complete prob-
lems that are HARD and important to solve, including many interesting
instances of SAT. There are also many interesting problems that are either
definitely or probably (if P 6= NP or similar conditions) harder than NP, for
example the problem of "AI Planning".

3. A huge number of problems are solved using SAT solvers because "SAT is an
easy target for reductions".

Explain that quote.

4Technical note: that doesn’t mean the algorithm has to run in exponential time. There are options in between, like 2
√
n.
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5 Challenge

1. Why wouldn’t our "trick" for reducing SAT to 3-SAT work in "2-SAT"?

2. Give a polynomial-time algorithm to solve 2-SAT.

3. Find a good bound on the length of the 3-SAT instance created by our SAT to 3-SAT reduction in
terms of the length of the initial SAT instance. (We take "length" to be 1 +

∑c
i=1(1 + ki).)

Fun Communications of the ACM reference with discussion of industrial and research applications of
SAT: http://goo.gl/KQoKFd.

Solving NP-complete problems is not just for industry and research, it’s for art as well (Travelling
Salesperson Problem): http://www.cgl.uwaterloo.ca/csk/projects/tsp/.
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