
CPSC 320 Notes: DP in 2-D

November 3, 2018

The Longest Common Subsequence of two strings A and B is the longest string whose letters appear in

order (but not necessarily consecutively) within both A and B. For example, the LCS of eleanor and naomi

is the length 2 string no (or equivalently the length 2 string ao).

(Biologists: If these were DNA base or amino acid sequences, can you imagine how this might be a

useful problem?)

1. Write at least three trivial or small instances and their solutions.

Now, working backward from the end (i.e., from the last letters, as with the change-making problem

where we worked from the total amount of change desired down to zero), let's �gure out the �rst choice we

make as we break the problem down into smaller pieces:

2. Consider the two strings tycoon and country. Describe the relationship of the length of their LCS

with the length of the LCS of tycoon and countr (the same string A, and string B with its last letter

removed).

3. Now consider the two strings compute and science. Describe the relationship of the length of their

LCS with the length of the LCS of comput and scienc (strings A and B with both of their last letters

removed).

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


4. Given two strings A and B of length n > 0 and m > 0, break the problem of �nding the length of the

LCS LLCS(A[1..n], B[1..m]) down into a recurrence over smaller problems. USE and generalize

your work in the previous problems!

LLCS(A[1..n], B[1..m]) =

if _____________________________ then

return ______________________________________________________________

else return the ________________ of

_______________________________________________________________________ and

_______________________________________________________________________

5. Given two strings A and B, if either has a length of 0, what is the length of their LCS?

6. The previous two problems give a recurrence to solve LLCS. Does this recurrence repeatedly solve

suproblems many times? (That is, might we want to use memoization or dynamic programming on

it?) Sketch enough of the recursion tree to justify your answer.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


7. Convert your recurrence into a memoized solution to the LLCS problem.

8. Complete the following table to �nd the length of the LCS of tycoon and country using your mem-

oized solution. (The row and column headed with an ε, denoting the empty string, are for the trivial

cases!)

ε c co cou coun count countr country

ε

t

ty

tyc

tyco

tycoo

tycoon

9. Go back to the table and extract the actual LCS from it. Circle each entry of the table you have to

inspect in constructing the LCS. Then, use the space below to write an algorithm that extracts the

actual LCS from an LLCS table.

Hint : you always need to look at the lower-right corner because that represents the solution to the

full problem. The recurrence used to compute this entry references either a single one, or two other

entries. Which one(s)? Which entry was the one the recurrence "chose"? What does that choice

mean in terms of the actual solution?

// Note: len(A) = n, len(B) = m, and Table is a filled-in

// (n+1)x(m+1) LLCS memoization table for A and B

ExplainLCS(A, B, Table):

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


10. Give an iterative dynamic programming solution that produces the same table as the memoized

solution.

11. Analyze the e�ciency of your memoized (question 7), DP (question 10), and "explain" (question 9)

algorithms in terms of runtime and memory use (not including the space used by the parameters).

You may assume the strings are of length n and m, where n ≤ m (without loss of generality).

12. If we only want the length of the LCS of A and B with lengths n and m, where n ≤ m, explain how

we can "get away" with using only O(n) memory in the dynamic programming solution.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


1 Challenge

1. Give a LCS algorithm that runs in the same asymptotic runtime as the one above, uses only O(m+n)
space (note that this is potentially more than the "space-e�cient" version mentioned above), and

returns not only the length of the LCS but the LCS itself. (Note: try this for yourself for a while,

and then walk through the description of the awesome algorithm in section 6.7 if you need help.)

2. Now, let's use a di�erent approach to save memory. WLOG, assume that the shorter string is of

length n and the longer of length m. Say that we know the LCS of the two strings is only k letters

shorter than the shorter of the two strings, i.e., length n− k. Give a LCS algorithm that uses space

in O(km)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	Challenge

