
CPSC 320 2017W1: Midterm 1

January 26, 2018

The next page are a pair of problem descriptions we will use on the exam.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


Problem reminders:

EMERGENCY DISTRIBUTION PROBLEM (EDP)
EDP's input is an undirected, unweighted graph G = (V,E) plus a set of distribution points D =

{d1, d2, . . . , dk} each a vertex in V and a single aid location a ∈ V that is not in D. The output is the
number of non-overlapping (edge-wise distinct) paths leading from some di to a. (Multiple paths may lead
from a single distribution point, and paths may lead from di�erent distribution points.)

Here are some small sample instances with their solutions, where d, d1, d2 are distribution points and a
is the aid vertex:

Solution: 1. Solution: 2. Solution: 2.

NETWORK BANDWIDTH PROBLEM (NBP)
You have an e�cient algorithm to solve the "network bandwidth problem" (NBP). NBP's input is a

weighted, directed graph G = (V,E) (where the tuple (u, v, w) ∈ E represents a directed edge from u
to v with integer weight w) and designated source and target vertices s and t. A node in the graph is a
server and an edge is a network link between servers, weighted by its bandwidth�the maximum number
of bytes per second the link can carry. (A weight of ∞ is also allowed, indicating unlimited bandwidth.)

NBP's output is the maximum bandwidth that can be carried from s to t.
Notes: The bandwidth on any link cannot exceed that link's weight. The bandwidth coming out of s is

unlimited but none can go in, while unlimited bandwidth can go into t but none can come out. Otherwise,
for any node v, the bandwidth coming into the node must equal the bandwidth coming out. Assume only
integral (or in�nite for links with weight ∞) amounts of bandwidth can be used on each edge.

Here are some small sample instances with their solutions and a brief description of how to send the
solution bandwidth from s to t. (Note: solving small instances by hand may be helpful, but you do not
need to know or understand any algorithm to solve this problem.)

Solution: ∞. Solution: 5. Solution: 5.
∞ on s→ t 3 on s→ a 3 on s→ t

2 on s→ b 2 on s→ a
1 on a→ b 2 on a→ t
2 on a→ t
3 on b→ t

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


This page intentionally left (almost) blank.
If you write answers here, you must CLEARLY indicate on this page what question they
belong with AND on the problem's page that you have answers here.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


WRITE YOUR UGRAD ID: @ugrad.cs.ubc.ca (-1 mark if missing)

1 Di�erential Treatment [13 marks]

1. Consider the execution of the Gale-Shapley algorithm with women proposing, and imagine that it
maintains a "marker" for every proposing person w, denoting the ranking of the person to whom she
will next propose (if she makes another proposal). (I.e. her most preferred match is rank 1, second
most preferred is rank 2, etc.)

Fill in the circles next to the correct choices in order to complete the following narrative which justi�es
a bound on the worst-case running time of Gale-Shapley. [5 marks]

Every iteration of Gale-Shapley moves one proposer's marker to a
more

less
preferred

rank.

Assuming constant time access to the preferences of all participants, each iteration (proposal

and acceptance/rejection) requires time

O(1)

O(lg n)

O(n)

in the worst case.

Since there are only

O(1)

O(n)

O(n2)

preferences total, for all proposers,

O(n)

O(n lg n)

O(n2)

O(n3)

is a(n)

upper

lower
bound on the total running time of Gale-Shapley.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


2. Consider this problem: Find and return a pair of any two di�erent numbers in an array of n numbers.
The array may contain duplicates but does contain at least two distinct values. [3 marks]

Fill the circle next to the best big-O bound for the worst-case performance of an e�cient algorithm
to solve this problem if the array is. . .

(a) . . . unordered: O(1)

O(lg n)

O(n)

O(n lg n)

O(n2)

(b) . . . known to be sorted: O(1)

O(lg n)

O(n)

O(n lg n)

O(n2)

3. Choose the data structure for each problem below that most e�ciently supports a solution. Choose
the best answer. If there are multiple best answers, just pick one. [3 marks]

(a) Given a string with 2n characters, determine if it is a palindrome (i.e., reads the same forward
and backward).

Chosen data structure: [1 mark]

stack

queue

priority queue (implemented as a binary heap)

map/dictionary (implemented as a hash table)

(b) Given an odd query integer q, determine if a sequence of n integers contains two integers that
sum to q

Chosen data structure: [2 marks]

stack

queue

priority queue (implemented as a binary heap)

map/dictionary (implemented as a hash table)

4. DFS and BFS can produce di�erent trees on the same (undirected, connected) graph depending on
which node they are run on and what order children are visited. Which of these stays the same for a
given graph regardless of these choices? Fill in the boxes next to all that apply: [2 marks]

The height of a DFS tree

The height of a BFS tree

The number of dashed edges in a DFS tree

The number of dashed edges in a BFS tree

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


2 eXtreme True And/Or False [15 marks]

Each of the following problems presents a scenario and a statement about that scenario. For each one, �ll
the circle by the best of these choices:

� The statement is ALWAYS true, i.e., true in every instance matching the scenario.

� The statement is SOMETIMES true, i.e., true in some instance matching the scenario but also false
in some such instance.

� The statement is NEVER true, i.e., true in none of the instances matching the scenario.

Then, justify your answer as follows:

ALWAYS answer: give a small instance that �ts the scenario for which the statement is true and brie�y
sketch the key point(s) in a proof that the statement is true for all instances that �t the scenario.

SOMETIMES answer: give a small instance that �ts the scenario for which the statement is true and a
small instance that �ts the scenario for which the statement is false.

NEVER answer: give a small instance that �ts the scenario for which the statement is false and brie�y
sketch the key point(s) in a proof that the statement is false for all instances that �t the scenario.

Here are the problems:

1. Scenario: Any SMP instance with n ≥ 2 in which two men share the same preference list. State-
ment: The Gale-Shapley algorithm run with men proposing terminates after exactly n iterations.
[5 marks]

ALWAYS

SOMETIMES

NEVER

True instance (always/sometimes) or proof that statement is false in all instances (never):

False instance (sometimes/never) or proof that statement is true in all instances (always):

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


2. Scenario: A simple, connected, undirected, unweighted graph with n ≥ 2. Statement: The mini-
mum distance among all longest paths between pairs of vertices in the graph is equal to the maximum
distance among all shortest paths between pairs of vertices in the graph.

ALWAYS

SOMETIMES

NEVER

True instance (always/sometimes) or proof that statement is false in all instances (never):

False instance (sometimes/never) or proof that statement is true in all instances (always):

3. Scenario: A simple, undirected graph (with no self-loops) with n ≥ 2 and m ≥ n2

5 . Statement:
The graph is connected. [5 marks]

ALWAYS

SOMETIMES

NEVER

True instance (always/sometimes) or proof that statement is false in all instances (never):

False instance (sometimes/never) or proof that statement is true in all instances (always):

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


3 Slapping on a Bandwidth-Aid [12 marks]

Consider a variant of EDP that we call VDP (vertex-disjoint path problem). The input is the same, but
the output is the maximum number of distinct, vertex-disjoint paths from distribution vertices to the aid
vertex. Speci�cally, no two paths from distribution vertices to aid vertex can share any vertex except their
end point (the aid vertex) and potentially their start point (if they begin at the same distribution point
but travel di�erent paths to the aid vertex).

We now describe a solution to VDP via reduction to NBP. The core of the reduction is to limit travel
"through" a vertex by transforming a vertex like v in VDP (shown with only its immediate neighbors):

into a pair vin and vout in NBP:

Here is our (on track but broken) reduction:

Convert an instance of VDP to an instance of NBP:

1. Generate new vertices in VNBP as follows:

(a) For the aid vertex a, generate a vertex ain ∈ VNBP .

(b) For each distribution vertex d ∈ D, generate a vertex dout ∈ VNBP .

(c) For each other vertex v ∈ VV DP , generate two vertices vin, vout ∈ VNBP and an edge
(vin, vout, 1) ∈ ENBP .

2. For each undirected edge (u, v) ∈ EV DP , if possible generate two edges: (uout, vin,∞) and
(vout, uin,∞) in ENBP , skipping cases where a corresponding vertex does not exist.

(E.g., an edge (v, a) with the aid vertex can produce only an edge from vout to ain, since
aout does not exist.)

3. Generate one additional vertex v′ in VNBP .

4. For each distribution point d ∈ D, generate an edge (v′, dout,∞) ∈ ENBP .

5. Finally, let s = v′ and t = ain.

Convert a solution to NBP to VDP:

Let the solution to VDP be the solution to NBP.

On the next pages, you consider and comment on small VDP instances and this reduction. In each instance,
the vertices labelled d1 or d2 are distribution points, the vertex labelled a is the aid vertex, and others
are "regular" vertices.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


1. Consider this VDP instance, for which the correct solution is 2:

(a) Draw the NBP instance created by the reduction from this VDP instance. [3 marks]

(b) Give the solution to this instance produced by the reduction: . [1 mark]

2. Consider this VDP instance, for which the correct solution is 1:

(a) Draw the NBP instance created by the reduction from this VDP instance. [4 marks]

(b) Give the solution to this instance produced by the reduction: . [1 mark]

3. The instances above highlight a problem with the reduction. Fill in the blanks below to describe the
very small change needed to �x the reduction on the previous page. [3 marks]

Change the in step to .

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	Differential Treatment [13 marks]
	eXtreme True And/Or False [15 marks]
	Slapping on a Bandwidth-Aid [12 marks]

