
7 2 3 6 4 1 1 9 0 7 3 2 1

 

Important notes about this examination 

1. You have 50 minutes to complete this exam.  
2. You are allowed up to three textbooks and (the equivalent of) a 3" 3‐ring binder of notes as 

references. Otherwise, no notes or aids are allowed. No electronic equipment is allowed. 
3. Please write darkly and clearly in non‐erasable pen. 
4. Good luck! 

Full Name:______________________

Signature:______________________ 

UBC Student #: 

THE UNIVERSITY OF BRITISH COLUMBIA 
CPSC 320: FINAL EXAMINATION – Group – April 27, 2017 

Please do not write in this space:

Full Name:______________________

Signature:______________________ 

UBC Student #: 

Full Name:______________________

Signature:______________________ 

UBC Student #: 

Full Name:______________________

Signature:______________________ 

UBC Student #: 

Full Name:______________________

Signature:______________________ 

UBC Student #: 

Exam ID: 

Question 2: 

Question 3: 

Question 4: 

Question 5: 

Question 6: 

Question 7: 

Question 8: 

Question 9: 

Question 10: 



Student Conduct during Examinations 
1. Each examination candidate must be prepared to produce, upon the request of the 

invigilator or examiner, his or her UBCcard for identification. 
2. Examination candidates are not permitted to ask questions of the examiners or invigilators, 

except in cases of supposed errors or ambiguities in examination questions, illegible or 
missing material, or the like. 

3. No examination candidate shall be permitted to enter the examination room after the 
expiration of one-half hour from the scheduled starting time, or to leave during the first half 
hour of the examination. Should the examination run forty-five (45) minutes or less, no 
examination candidate shall be permitted to enter the examination room once the 
examination has begun. 

4. Examination candidates must conduct themselves honestly and in accordance with 
established rules for a given examination, which will be articulated by the examiner or 
invigilator prior to the examination commencing. Should dishonest behaviour be observed 
by the examiner(s) or invigilator(s), pleas of accident or forgetfulness shall not be received. 

5. Examination candidates suspected of any of the following, or any other similar practices, 
may be immediately dismissed from the examination by the examiner/invigilator, and may 
be subject to disciplinary action: 
i. speaking or communicating with other examination candidates, unless otherwise 

authorized; 
ii. purposely exposing written papers to the view of other examination candidates or 

imaging devices; 
iii. purposely viewing the written papers of other examination candidates; 
iv. using or having visible at the place of writing any books, papers or other memory aid 

devices other than those authorized by the examiner(s); and, 
v. using or operating electronic devices including but not limited to telephones, calculators, 

computers, or similar devices other than those authorized by the examiner(s)—
(electronic devices other than those authorized by the examiner(s) must be completely 
powered down if present at the place of writing). 

6. Examination candidates must not destroy or damage any examination material, must hand in 
all examination papers, and must not take any examination material from the examination 
room without permission of the examiner or invigilator. 

7. Notwithstanding the above, for any mode of examination that does not fall into the 
traditional, paper-based method, examination candidates shall adhere to any special rules 
for conduct as established and articulated by the examiner. 

8. Examination candidates must follow any additional examination rules or directions 
communicated by the examiner(s) or invigilator(s). 

 



POSSIBLY HELPFUL NOTES
Sums of sequences:

�

x∑
y=1

y = x(x+1)
2 , for x ≥ 0.

�

x∑
y=1

y2 = x(x+1)(2x+1)
6 , for x ≥ 0.

�

x∑
y=0

2y = 2x+1 − 1, for x ≥ 0.

The Master Theorem
For a recurrence like T (n) = aT (nb ) + f(n), where a ≥ 1 and b > 1, the Master Theorem states three

cases:

1. If f(n) ∈ O(nc) where c < logb a then T (n) ∈ Θ(nlogb a).

2. If for some constant k ≥ 0, f(n) ∈ Θ(nc(log n)k) where c = logb a, then T (n) ∈ Θ(nc(log n)k+1).

3. If f(n) ∈ Ω(nc) where c > logb a and af(nb ) ≤ kf(n) for some constant k < 1 and su�ciently large

n, then T (n) ∈ Θ(f(n)).

De�nitions of big-O and friends:

� f(n) ∈ O(g(n)) (big-O, that is) exactly when there is a positive real constant c and positive integer

n0 such that for all integers n ≥ n0, f(n) ≤ c · g(n).

� f(n) ∈ o(g(n)) (little-o, that is) exactly when for all positive real constants c, there is a positive

integer n0 such that for all integers n ≥ n0, f(n) ≤ c · g(n).

� f(n) ∈ Ω(g(n)) exactly when g(n) ∈ O(f(n)).

� f(n) ∈ ω(g(n)) exactly when g(n) ∈ o(f(n)).

� f(n) ∈ Θ(g(n)) exactly when f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).



This page intentionally left (almost) blank.
If you write answers here, you must CLEARLY indicate on this page what question they

belong with AND on the problem's page that you have answers here.



1 What Is Your GradeScope Student #? [1 mark]

Write the GradeScope Student # of each group member clearly and legibly in the following blanks:

1.

2.

3.

4.

5.

There are a total of 75 marks available on the exam.

Make Sure That You Complete The ONE EASY BONUS POINT QUESTION in the group

version of the exam!

2 A SAT Stand-O� [6 marks]

In class, we looked at a reduction from SAT to 3-SAT. Here we'll consider a slightly simpli�ed reduction,

from L4-SAT (a SAT variant where all clauses have four or fewer literals) to 3-SAT.

For clauses with 1 or 2 literals, we convert to 3-SAT clauses by repeating the last literal. We leave

3-literal clauses as they are.

To convert 4-literal clauses, we put the �rst three literals in one clause, and repeat the fourth literal

three times in a second clause. This converts a clause of the form (x1 ∨ x2 ∨ x3 ∨ x4) to two clauses

(x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x4 ∨ x4).
This reduction is incorrect. Complete the following to supply a counterexample to its correctness:

Counterexample instance (of L4-SAT):

Correct solution to this instance (YES or NO plus a VERY brief explanation):

Reduction's solution to this instance (YES or NO plus a VERY brief explanation):



3 O(1) Answer Problems [12 marks]

1. Consider this recurrence: T (n) = 27T (dn3 e) +
√
n
2 . Assume the base case is constant for small n. Fill

in values below for the a, b, c, and f(n) values for the Master Theorem (stated on the previous page)

and the resulting asymptotic bound on the recurrence. [3 marks]

a = f(n) =
b =
c = bound:

2. In each blank on the left, write the letter of the Θ bound for that function. [2 marks]

7n2 + 12(lg n)3 A. Θ(lg n)

2(n
0.5) B. Θ((lg n)3)

n2 lgn
n(n+1) C. Θ(n2)

2(n/2) D. Θ(2
√
n)

E. Θ((
√

2)n)

3. 3-SAT is known to be NP-complete. We reduce a new decision problem MYSTERY to 3-SAT (correctly

and in polynomial time). Answer the following two questions about what this reduction establishes.

[3 marks]

Does this establish that MYSTERY is in NP? Circle one. YES NO

Does this establish that MYSTERY is NP-complete? Circle one. YES NO

4. True or False. [4 marks]

(a) An adversary can provide input that forces worst-case performance from Randomized QuickSort.

TRUE FALSE

(b) A reduction must work for any legal input to the original problem.

TRUE FALSE

(c) NP-complete problems are the hardest kinds of algorithmic problems.

TRUE FALSE

(d) Assuming P 6= NP, the following subproblem of the Steiner Tree Problem is in P (i.e., can be

solved in polynomial time): the subproblem containing only the instances where all nodes are

shaded.

TRUE FALSE



4 Clark Kent's Glasses [8 marks]

Consider these well-known algorithmic problems or approaches:

A. Vertex Cover D. Graph Colouring G. Minimum spanning tree

B. Hamiltonian Cycle E. Traveling Salesman H. PageRank

C. Subset Sum F. Bloom Filters I. Sorting

Each of the problems below is a �disguised� version of one of the problems above. Some problems above

may be used multiple times; others may not be used at all. For each problem below, write the letter of the

problem above it best matches. [2 marks per question]

1. You're writing a solver for numeric puzzle problems. The puzzle has a number of blanks in it,

where each blank needs to be �lled with a single digit 0�9. Certain pairs of blanks have to have

di�erent digits from each other (the �constraints�). You want to determine if it's possible to �ll a digit

into each blank without violating any constraints.

2. You're designing an assembly line to make circuit boards. Each circuit board needs a large number

of holes drilled into it at speci�c locations, in any order. You have a single drill head, which drills a

hole and then moves to the location of the next hole to be drilled. After all holes have been drilled, it

has to move back to its starting position to repeat the process for the next circuit board. You want

to �gure out the fastest way to drill the holes.

3. You want your mobile app to include a basic spellcheck feature that underlines words that aren't

in a large set of foreign language dictionaries. But you don't have enough memory space available to

store all the dictionaries. You decide that you're okay with your spellchecker making a mistake on no

more than 0.5% of words as long as you can substantially reduce the amount of memory you have to

use.

4. You're an animal researcher, and you've designed a maze for rats that consists of several chambers

connected by tunnels. You're interested in knowing whether the rats move randomly through the

maze. So you want to know: if they do traverse the maze at random, how often will a rat end up in

each chamber?



5 eXtreme True And/Or False [8 marks]

Each of the following statements may be always true, sometimes true, or never true. Select the best of
these three choices and then:

� If the statement is always true, (1) give and very brie�y explain an example instance in which it is

true and (2) sketch the key points of a proof that it is always true.

� If the statement is never true, (1) give and very brie�y explain an example instance in which it is

false and (2) sketch the key points of a proof that it is never true.

� If the statement is sometimes true, (1) give and very brie�y explain an example instance in which

it is true and (2) give and very brie�y explain an example instance in which it is false.

Note that you will always select a choice and then give two answers. There is space for this below.

1. In a connected graph with n ≥ 3 nodes, at most n− 1 nodes are diametric. (Recall: the diameter of

a graph is the maximum over any pair of nodes of the shortest distance between that pair of nodes.

Further, if the shortest path from i to j in a graph is the diameter, we say that each of i and j is

diametric.) [4 marks]

Circle one: ALWAYS SOMETIMES NEVER

(1)

(2)

2. A DAG (directed, acyclic graph) with at least two nodes is strongly connected. NOTE: for this
problem, we assume that a strongly connected directed graph is one in which each node is reachable

from each other node besides itself. Thus, any DAG with zero or one nodes is strongly connected.

[4 marks]

Circle one: ALWAYS SOMETIMES NEVER

(1)

(2)



6 A Stable of Matching Problems [6 marks]

Complete the reduction below from a variant of the stable matching problem called FMP to the weighted

bipartite matching problem (WBM). In FMP, instead of avoiding instabilities, we want to maximize the

number of people who end up with their �rst choice of partner. (Further, we still require that everyone

ends up married.)

At the bottom of the page is a full description of the weighted bipartite matching problem. [6 marks]

REDUCTION: Given an instance of FMP with n men m1,m2, . . . ,mn and n women w1, w2, . . . , wn,

create a weighted bipartite graph, where

1. There are vertices on the left side of the graph and vertices on the right.

2. Each vertex on the left side of the graph vLi represents .

3. Each vertex on the right side of the graph vRi represents .

4. There is an edge (vLi , vRj ) between each pair of a vertex on the left and a vertex on the right.

5. The weight of edge (vLi , vRj ) is:

.

Now, solve the WBM instance and then produce the FMP instance's solution by converting each edge

(vLi , vRj ) in the WBM maximum matching into the married couple .

For reference: In the Weighted Bipartite Matching problem, you are given a weighted bipartite

graph G = (V1, V2, E), and you compute a maximal matching E′ ⊆ E. A matching is a set of edges such

that no two edges share a vertex (i.e., no vertex �appears� more than once in the matching), and a maximal

matching is a matching of maximum weight, where the weight of a matching is the sum of the weights of

its edges.

For example, in the graph to the right, the

maximal matching is the edges (A,D) and
(B,E) with a weight of 10 + 10 = 20.



7 The Problem, InAWord [15 marks]

Given a string of letters, you want to determine whether there's a way to insert spaces so that the string

becomes a sequence of valid English words. For example, the string mysunflower works because putting

a space after letter 2 produces my sunflower, or putting spaces after letters 2 and 5 produces my sun

flower. The string abcdef does not work.

Assume you have a helper function isWord(str) that runs in constant time and returns True if str is

an English word, and False otherwise.

1. A friend proposes this greedy approach: Starting at the beginning of the string, add one new character

at a time, and check if the characters form a word. As soon as you �nd a word, put a space there,

and recursively call the same algorithm on the rest of the string. Here is pseudocode:

function canSplit(str):

for i = 1 to length(str)-1

if isWord(str[1 .. i]) // are the first i letters a word?

return canSplit(str[i+1 .. length(str)])

// At end of loop: no prefix is a word; so, we return

// True if and only if the entire string is a word.

return isWord(str)

(a) Assume that isWord returns True for the strings a, at, ate, tea, cup, and teacup, and False for

all other strings. In that case, the greedy algorithm returns True for the input string ateacup.

How does it split ateacup as it runs? Circle the best answer. [1 mark]

i. a teacup

ii. a tea cup

iii. ate a cup

iv. The function �nds a di�erent splitting.

(b) Complete the following to supply a counterexample that proves this greedy approach is not
correct. Note: this counterexample uses made-up words rather than English ones. [2 marks]

List of ALL strings that should be considered words: a, aa, bb, bbb.

Counterexample instance:

Correct solution to this instance (including an actual split, if the answer is True):

Greedy solution to this instance (including an actual split, if the answer is True):



2. Complete the following recurrence to solve the canSplit problem for non-empty strings in such a way

that we require only linear table entries (in the length of str) to convert this to dynamic programming.

[6 marks]

canSplit(str) =





True if isWord(str) is true

∃i ∈ the integers 1 up to (and including) such that:

otherwise

3. Complete the following dynamic programming pseudocode function to solve the canSplit problem

based on the recurrence above. [6 marks]

function canSplit(str):

n = length(str)

// Set up the array:

let Table be an array with indexes 1 .. __________ // FILL IN THE BLANK

for i = ___________________________: // FILL IN THE BLANK

if __________________: // FILL IN THE BLANK

// FILL IN THE "THEN" CASE

else:

// FILL IN THE "ELSE" CASE

return _________________ // FILL IN THE BLANK



8 Majority Sortition [11 marks]

You're given a sorted array of integers and asked if a given element x is a majority element in the array.

That is, in an array of size n, we want to know if the number of appearances of element x is > n
2 . (This is

equivalent to the number of appearences being ≥ bn2 c+ 1.)

1. Consider the following two example arrays and circle the best answer for the question about each one.

[2 marks]

(a) We list only the �rst four elements of the array below. What do we know about the value of

A[7] if the element 25 is a majority element?

index 1 2 3 4 5 6 7 8 9

A[index] 15 15 18 25 ?

Circle the best answer: A[7] = 25 A[7] 6= 25 we know NEITHER

(b) We list only the �rst six elements of the array below. Is 25 is a majority element?

index 1 2 3 4 5 6 7 8 9

A[index] 15 15 16 16 16 25

Circle the best answer: YES NO UNKNOWN

CONTINUED ON THE NEXT PAGE



2. Fill in the following O(log n) time algorithm to solve this problem. (Note that there are two functions,

and both include portions to be �lled in.) [9 marks]

function isMajority(A, x):

// Determine whether x is a majority element in A.

// A has indexes 1, 2, 3, .., n

n = length(A)

i = firstOccurrence(A, x, 1, n)

if i == -1:

return False

else if ________________________________________________:

return True

else:

return False

function firstOccurrence(A, x, low, high):

// returns index of first occurrence of x in A[low..high]

if ___________________:

// subarray A[low .. high] is empty

return -1

mid = floor((low+high)/2)

if ____________________________:

// The first occurrence is at index low

return low

else if mid > low and _____________________________________:

// The first occurrence is at index mid.

return mid

else if A[mid] < x:

// The first occurrence is in the right half.

return ___________________________________

else:

// The first occurrence is in the left half.

return ___________________________________



9 Fog-o-War [8 marks]

RECALL the TUG-O-WAR problem: given n people p1, . . . , pn (for n > 1) and their weights w1, . . . , wn,

we want to generate two teams that are well-balanced.

Speci�cally, we consider this decision variant of the problem: given n people with their weights and a

target di�erence k, can we assign each of the n people into one of two teams (team 1 and team 2) such that

the absolute di�erence in total weight between team 1 and team 2 is less than or equal to k?

1. Give a good certi�cate for TUG-O-WAR problem. (Note: you do not need to prove that TUG-O-WAR

is in NP, but your certi�cate should be a good choice for such a proof.) [2 marks]

2. Recall the SUBSET-SUM problem: given a list of numbers A = a1, . . . , an and a value W , does there

exist a subset of elements of A that sum to W?

SUBSET-SUM is known to be NP-complete. Give a reduction from SUBSET-SUM to TUG-O-WAR

to prove that TUG-O-WAR is NP-hard. Do not prove the correctness of your reduction, but you

should clearly explain the key elements of your reduction and why they are there.

Assume that all elements of A are positive, and that m
2 ≤W ≤ m, wherem is the sum of all elements

in A. Remember that your algorithm creates the TUG-O-WAR instance and can therefore, e.g.,

freely choose the value of k to be a simple and useful one. [6 marks]



10 Bonus [3 BONUS marks]

THE NEW FIRST QUESTION IS EASY: COMPLETE IT!
Bonus marks add to your exam and course bonus mark total but are not required. WARNING: These

questions are too hard for their point values. We are free to mark these questions harshly. Finish the rest

of the exam before attempting these questions. Do not taunt these questions.

1. What was your favorite algorithm, analysis technique, proof, or other part of the course? (Worth 1

bonus point.)

NOTE: Write something quick now (for full credit) and then come back later in the unlikely event

that you have time and write a considered answer (to be a hero like Squirrel Girl).

2. Recall the majority problem described earlier in this exam. Give and brie�y justify the correctness

of an algorithm unsortedMajority(A) that runs in O(n) time, takes as input an unsorted array of

numbers A of length n, and produces the majority element if there is one and otherwise any arbitrary

element of the array.



3. Answer Like an �eXtreme True And/Or False� Question: In a connected graph with n ≥ 3
nodes, at most n − 2 nodes are articulation points. (Recall: an articulation point is a node whose

removal increases the number of connected components in the graph.)

Circle one: ALWAYS SOMETIMES NEVER

(1)

(2)

4. Give a clear and correct reduction from dHAMCYCLE (the directed Hamiltonian Cycle problem) to

uHAMCYCLE (the undirected Hamiltonian Cycle problem). You must clearly and concisely justify the

correctness of your reduction but need not formally prove its correctness.

(Reminder: the Hamiltonian Cycle problem asks whether there is a simple cycle in a graph that

includes every node in the graph. You may assume that the graph is guaranteed to have at least three

vertices.)



This page intentionally left (almost) blank.
If you write answers here, you must CLEARLY indicate on this page what question they

belong with AND on the problem's page that you have answers here.



This page intentionally left (almost) blank.
If you write answers here, you must CLEARLY indicate on this page what question they

belong with AND on the problem's page that you have answers here.


