
CPSC 320 2018W1: Assignment 4

November 7, 2018

1 Nuts and bolts

1. In the quiz, you investigated two different algorithms for the Nuts and Bolts problem: algorithm
Nuts-and-Bolts is simple but inefficient, running in O(n2) time in both the average case and the
worst case. Algorithm NB-Improved is much better, but assumes irrealistically that the nuts are given
to you sorted by size.

After thinking about the version of the problem where nuts come in a bag for a while, you realize that
you might be able to accomplish the task more efficiently by using the nut and bolt you matched as
a way to filter the rest.

Algorithm NB-Quick(Nut-Set, Bolt-Set)
If Nut-Set is empty, then

Return the empty set
Else If Nut-Set contains exactly one nut, say N , then

Let B be the single bolt in Bolt-Set
Return {(N,B)}

Else
Remove a nut, say N , from Nut-Set
Partner-found = False
Tried-Bolts = ∅
While not Partner-found

Remove any bolt, say B, from Bolt-Set
If bolt B threads into nut N then

Partner-found = True
Else

Add B to Tried-Bolts
For each nut in Nut-Set

If the nut is too lose for B
Add it to the set Loose-Nuts

Else add it to the set Tight-Nuts
For each bolt in Bolt-Set ∪ Tried-Bolts

If the bolt is too large for N
Add it to the set Large-Bolts

Else add it to the set Small-Bolts
Return {(N,B)}∪ NB-Quick(Loose-Nuts, Large-Bolts)

∪ NB-Quick(Tight-Nuts, Small-Bolts)

Consider the case where, at every recursive call, both of the sets Tight-Nuts and Loose-Nuts have
size in the range [n/k, (k − 1)n/k], for some integer k > 2. Write a recurrence relation that gives a

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


good asymptotic (big-O) upper-bound on the running time of this algorithm, as a function of both n
and k.

T ′(n) ≤



c, when n = 0 or n = 1 // base cases

//recursive case

2. Which of the following relationships holds between the function T from question 1, and the function
T ′ from question 3 of the nuts and bolts question from quiz 4?

T ′ ∈ o(T ) T ′ ∈ Θ(T ) T ′ ∈ ω(T ) None of these hold

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


2 Array-chopping

An arithmetic array is one whose elements form an arithmetic sequence, in order—i.e., they’re arrays of the
form A = [a1, a1+c, a1+2c, . . . , a1+(n−1)c], where A has length n (for n ≥ 2). You’re given an arithmetic
array with k elements missing from somewhere in the middle (i.e., it’s not the first or last element that’s
been removed). For example, the missing numbers in [3, 6, 12, 18, 24, 27] are 9, 15 and 21. The missing
numbers in [1, 22, 29, 36] are 8 and 15.

1. Give an example that shows that if you are not told what k is, then you can not determine c, no
matter how many elements the array you are given contains.

2. Suppose now that you are not told k, but you are given an upper bound K on its value. You will be
able to determine c and k as long as the array you receive contains at least f(K) elements. What is
f(K)?

f(K) =

3. Describe an algorithm to compute the values of c and k, assuming you know K and are given an array
with at least f(K) elements.

4. Finally suppose that you are told what k is. Describe an efficient algorithm that takes as input the
array and the value of k, and returns an array containing all missing elements.

5. What is the worst-case running time of your algorithm, as a function of k and the length n of the
array?

3 More longest common subsequences

An instance of the 3-sequence longest common subsequence problem (3LLCS) consists of three sequences
x = x1x2 . . . xn, y = y1y2 . . . yn and z = z1z2 . . . zn; for simplicity we assume that all are of the same length.
The problem is to find the length of the longest sequence that is a subsequence of all three sequences. We
denote this length by 3LLCS(x, y, z).

1. What is 3LLCS(brute, force, searches)?

2. Give a recurrence that expresses 3LLCS(x, y, z) in terms of 3LLCS of smaller strings.

3. Design a polynomial-time, iterative, dynamic programming algorithm for solving this problem. (You
may well want to first design a memoized recursive algorithm for the problem, but you do not need
to submit a description of this algorithm.)

4. State what is the running time of your algorithm of part 3 (you do not need to provide justification).

5. Describe how to adapt your algorithm so that it returns the the actual longest common subsequence
of the three input sequences (not just the length).

6. [Bonus] Give an example that proves that the LCS of three sequences x, y and z can be neither of
LCS(x, LCS(y, z)), LCS(y, LCS(x, z)), LCS(z, LCS(x, y)).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


4 DNA free energies

Free energy is a fundamental property of DNA duplexes (double-stranded DNA), and identifying collections
of DNA strands with a particular free energy is useful in many biotechnologies. You will tackle a simplified
version of this problem here.

• Let s = s1s2 . . . sn be a string over the alphabet {A,C,G, T}. (The string represents a DNA sequence,
which can form a duplex with its Watson-Crick complement, but these details need not concern you.)
Throughout assume that n ≥ 2.

• Let F be a table F [x : y] of 16 nonnegative parameters, where x, y ∈ {A,C,G, T}.

• Let ∆G(s) be the sum
F [s1 : s2] + F [s2 : s3] + . . . + F [sn−1 : sn].

For example, if some of the table entries are as follows;

F [A : A] = 2, F [A : C] = 3, F [C : T ] = 7, F [T : A] = 4, F [C : G] = 12,

then ∆G(AACTACG) = 31, ∆G(CT ) = 7, and ∆G(AAA) = 4.

• For any integer g, let #∆(n, g) be the total number of length-n strings over alphabet {A,C,G, T}
that have ∆G = g.

• Let #∆(n, g,X) be the total number of length-n strings s that start with the letter X and have
∆G(s) = g.

1. Which of the following recurrences is correct for #∆(n, g,X)? You do not need to explain your answer
here, just circle which option you believe to be correct. Assume that for all of the cases, the base
conditions are

#∆(n, g,X) =

{
0, if n ≥ 2 and g < 0,
the number of table entries F [X : Y ] that have value = g, if n = 2 and g ≥ 0.

#∆(n, g,X) =
∑

Y ∈{A,C,G,T}

#∆(n− 1, g − F [X : Y ], Y ), n > 2, g ≥ 0

#∆(n, g,X) =
∑

Y ∈{A,C,G,T}

(F [X : Y ] + #∆(n− 1, g − F [X : Y ], Y )), n > 2, g ≥ 0

#∆(n, g,X) =
∑

Y ∈{A,C,G,T}

#∆(n− 2, g − F [X : Y ], Y ), n > 2, g ≥ 0

#∆(n, g,X) =
∑

Y ∈{A,C,G,T}

(F [X : Y ] + #∆(n− 2, g − F [X : Y ], Y )), n > 2, g ≥ 0

2. Give an expression for #∆(n, g) in terms of #∆(n, g,X), X ∈ {A,C,G, T}.

3. Design a memoized recursive algorithm that computes ∆(n, g,X) when n ≥ 2 and X ∈ {A,C,G, T}.
Your algorithm should have running time O(ng).

4. Explain why the running time of your algorithm is O(ng).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

	Nuts and bolts
	Array-chopping
	More longest common subsequences
	DNA free energies

