
CPSC 320 2018W1: Assignment 3

October 18, 2018

Please submit this assignment via GradeScope at https://gradescope.com. Be sure to identify ev-
eryone in your group if you’re making a group submission. (Reminder: groups can include a maximum of
three students; we strongly encourage groups of two.)

Submit by the deadline Saturday October 27, 2018 at 10PM. For credit, your group must make a
single submission via one group member’s account, marking all other group members in that submission
using GradeScope’s interface. Your group’s submission must:

• Be on time.

• Consist of a single, clearly legible file uploadable to GradeScope with clearly indicated solutions to
the problems. (PDFs produced via LATEX, Word, Google Docs, or other editing software work well.
Scanned documents will likely work well. High-quality photographs are OK if we agree they’re
legible.)

• Include prominent numbering that corresponds to the numbering used in this assignment handout
(not the individual quizzes). Put these in order starting each problem on a new page, ideally. If
not, very clearly and prominently indicate which problem is answered where! When uploading
assignments to gradescope, marks will be docked if pages are not properly assigned to each question.

• Include at the start of the document the ugrad.cs.ubc.ca e-mail addresses of each member of
your team. (Please do NOT include your name on the assignment, however.1)

• Include at the start of the document the statement: "All group members have read and followed
the guidelines for academic conduct in CPSC 320. As part of those rules, when collaborating with
anyone outside my group, (1) I and my collaborators took no record but names (and GradeScope
information) away, and (2) after a suitable break, my group created the assignment I am submitting
without help from anyone other than the course staff." (Go read those guidelines!)

• Include at the start of the document your outside-group collaborators’ ugrad.cs.ubc.ca IDs, but not
their names. (Be sure to get those IDs when you collaborate!)

Before we begin, a few notes on pseudocode throughout CPSC 320: Your pseudocode need not compile
in any language, but it must communicate your algorithm clearly, concisely, correctly, and without irrelevant
detail. Reasonable use of plain English is fine in such pseudocode. You should envision your audience as a
capable CPSC 320 student unfamiliar with the problem you are solving. If you choose to use actual code,
note that you may neither include what we consider to be irrelevant detail nor assume that we understand
the particular language you chose. (So, for example, do not write #include <iostream> at the start of
your pseudocode, and avoid idiosyncratic features of your language like Java’s ternary (question-mark-colon)
operator.)

1If you don’t mind private information being stored outside Canada and want an extra double-check on your identity,
include your student number rather than your name.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

https://gradescope.com/
https://gradescope.com
http://blogs.ubc.ca/cpsc3202017W1/syllabus/#conduct
http://creativecommons.org/licenses/by-nc/4.0/


1 Hi Ho, hi ho, we are digging the road

Recall that the city of Vancouver needs to dig up many roads during the summer in order to replace ageing
water pipes. There are pipes along n road segments that need to be replaced in a given summer. The
process of replacing a pipe consists in

• first digging a hole

• then performing the replacement

• and finally filling in the hole and repaving

We will assume all holes have been dug by the beginning of the summer. The third part of the job can be
done by any one of a large number of teams, and can be performed fully in parallel. However the task of
actually replacing the pipes requires a high degree of specialization, and hence there is only one team in
the city that is capable of performing it.

Let us call the road segments R1, . . . Rn, and suppose the job on road Ri requires si hours of time for
the first task, and ti hours of time for the second task. Since there is only one team capable of performing
the replacement of the old water pipes, city managers need to work out an order in which this team will
replace the pipes on the n road segments. As soon as the replacement on one road segment is complete, a
team in charge of refilling the hole and repaving the road can be called in.

Let us say that a schedule is an ordering of the jobs for the pipe replacement team, and the completion
time of the schedule is the earliest time at which all pipes have been replaced and all roads restored to their
initial condition (or better). This is an important quantity to minimize, since users tend to get upset when
roads have large holes in them.

In quiz 3, you saw that we can obtain an optimal schedule by ordering the jobs by decreasing ti value
(that is, starting with the job whose ti value is the largest, etc). To simplify notation, let us assume that
Ri is the job with the ith largest ti value. That is, assume that t1 ≥ t2 ≥ · · · ≥ tn−1 ≥ tn.

1. Prove that there is an optimal schedule whose first job is job R1. Hint: consider what happens if you
have an optimal schedule whose first job is not R1, and then you swap two (carefully chosen) jobs.

2. Using your result from question 1 and mathematical induction, prove that ordering the job by de-
creasing ti value is guaranteed to return an optimal solution.

2 Lowest common ancestor

Recall that in a tree rooted at a node r, a node v is an ancestor of node i (where v and i may be equal) if
v is on the path from r to i. Node v is a common ancestor of nodes i and j if v is an ancestor of i and v
is also an ancestor of j. The lowest common ancestor of i and j is the common ancestor of i and j with
the largest depth. Biologists are interested in finding the lowest common ancestor of pairs of nodes in trees
that model evolutionary relationships among organisms.

On the quiz, you derived a Θ(n) algorithm that takes two node i and j of a tree, and finds their lowest
common ancestor. Unfortunately, calling the Lowest-Common-Ancestor algorithm repeatedly on different
pairs of nodes will quickly become inefficient, because a lot of the work of traversing the tree is repeated
each time.

It is possible to pre-process the tree so that, after Θ(n) time pre-processing to build a data structure
that uses Θ(n) space, we can find the lowest common ancestor of two given nodes i and j in Θ(d) time in
the worst case, where d is the depth of the tree.

1. Describe the data structure you will build, and show why it can be constructed in Θ(n) time. Hint:
parent pointers may be helpful, but not sufficient.

2. Now rewrite the Lowest-Common-Ancestor algorithm to run in Θ(d) time in the worst case, given the
pre-processed tree data structure..

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


3 Hamming distance

Let x and y be binary strings of length n. The Hamming Distance between x and y, denoted by H(x, y), is
the number of positions where x and y disagree. That is, if x = x1x2 . . . xn and y = y1y2 . . . yn then H(x, y)
is the number of positions i for which xi 6= yi. Sets of strings that have high Hamming distance from each
other are useful as a means for information encoding in a situation where bits can get corrupted.

A S set of binary strings of length n is an (n, d) Hamming set if the Hamming distance between any
pair of strings in S is at least d.

1. Describe how to construct a (n, 2) Hamming set of size Ω(4n/3). (Hint: there is a construction that
is similar to, but better than, that given in the quiz solution.)

2. For 0 ≤ i ≤ 2n − 1, let si be the binary string of length n which encodes the nonnegative number i
in binary. For example, if n = 4 then s0 = 0000, s1 = 0001, s2 = 0010, and so on.

Let Set(n, i, d) be the set of i′ in the range 0 to 2n − 1 such that H(si, si′) < d. Explain why the size
of Set(n, i, d) is independent of i.

3. The following variant of Algorithm Hamming-Set from the quiz is essentially the same as an algorithm
described in a 1997 U.S. patent by biologist and Nobel Prize winner Sydney Brenner (patent number
5,604,097, “Methods for Sorting Polynucleotides Using Oligonucleotide Tags”).

Algorithm Brenner-Hamming-Set(n,d)

Initialize M to be a list of the 2n binary strings of length n (in arbitrary order)
i = 1
Repeat

Set M -old to be equal to the list M
Let s be the ith string in M
For each string s′ occurring after string s in M

If H(s, s′) < d then remove s′ from M
i++
Until (M -old = M) or (i is greater than the size of M)
Return M

Describe an input (n, d) and an initial listM on which Algorithm Brenner-Hamming-Set(n,d) produces
an output that is not a (n, d)-Hamming set. Show what the output is. (Brenner would have benefited
from having a CPSC 320 student in his lab!).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


4 Pell numbers

The infinite sequence of rational approximations to the square root of 2 starts with the numbers 1/1, 3/2,
7/5, 17/12, and 41/29. The infinite sequence of denominators of this sequence is called the Pell sequence,
so the Pell number sequence begins with 1, 2, 5, 12, and 29. The Pell numbers are also defined by the
following recurrence relation:

Pn =


0, ifn = 0,
1, ifn = 1,
2Pn−1 + Pn−2, otherwise.

1. Use induction to show that

Pn =
(1 +

√
2)n − (1−

√
2)n

2
√

2
.

2. Write a recursive algorithm Pell(n) that returns the n th Pell number.

3. Write a recurrence relation that describes the running time of your algorithm as a function of n.

4. Describe the solution to the recurrence from part (3) in terms of another sequence of numbers you
are almost certainly already familiar with (a closed form formula for the nth term of that sequence is
easily found online).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

	Hi Ho, hi ho, we are digging the road
	Lowest common ancestor
	Hamming distance
	Pell numbers

