
CPSC 320 2018W1: Assignment 2

September 29, 2018

Please submit this assignment via GradeScope at https://gradescope.com. Be sure to identify ev-
eryone in your group if you’re making a group submission. (Reminder: groups can include a maximum of
three students; we strongly encourage groups of two.)

Submit by the deadline Saturday October 6, 2018 at 10PM. For credit, your group must make a
single submission via one group member’s account, marking all other group members in that submission
using GradeScope’s interface. Your group’s submission must:

• Be on time.

• Consist of a single, clearly legible file uploadable to GradeScope with clearly indicated solutions to
the problems. (PDFs produced via LATEX, Word, Google Docs, or other editing software work well.
Scanned documents will likely work well. High-quality photographs are OK if we agree they’re
legible.)

• Include prominent numbering that corresponds to the numbering used in this assignment handout
(not the individual quizzes). Put these in order starting each problem on a new page, ideally. If
not, very clearly and prominently indicate which problem is answered where! When uploading
assignments to gradescope, marks will be docked if pages are not properly assigned to each question.

• Include at the start of the document the ugrad.cs.ubc.ca e-mail addresses of each member of
your team. (Please do NOT include your name on the assignment, however.1)

• Include at the start of the document the statement: "All group members have read and followed
the guidelines for academic conduct in CPSC 320. As part of those rules, when collaborating with
anyone outside my group, (1) I and my collaborators took no record but names (and GradeScope
information) away, and (2) after a suitable break, my group created the assignment I am submitting
without help from anyone other than the course staff." (Go read those guidelines!)

• Include at the start of the document your outside-group collaborators’ ugrad.cs.ubc.ca IDs, but not
their names. (Be sure to get those IDs when you collaborate!)

Before we begin, a few notes on pseudocode throughout CPSC 320: Your pseudocode need not compile
in any language, but it must communicate your algorithm clearly, concisely, correctly, and without irrelevant
detail. Reasonable use of plain English is fine in such pseudocode. You should envision your audience as a
capable CPSC 320 student unfamiliar with the problem you are solving. If you choose to use actual code,
note that you may neither include what we consider to be irrelevant detail nor assume that we understand
the particular language you chose. (So, for example, do not write #include <iostream> at the start of
your pseudocode, and avoid idiosyncratic features of your language like Java’s ternary (question-mark-colon)
operator.)

1If you don’t mind private information being stored outside Canada and want an extra double-check on your identity,
include your student number rather than your name.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

https://gradescope.com/
https://gradescope.com
http://blogs.ubc.ca/cpsc3202017W1/syllabus/#conduct
http://creativecommons.org/licenses/by-nc/4.0/


1 Feed Forward Loops

Gene regulatory networks in a cell involve many genes, with some genes (or rather the proteins encoded by
such genes) affecting the level of expression of other genes. The expression level of a gene (which can vary
over time) is the amount of the protein encoded by the gene that is present in the cell. Such networks can
be represented by directed graphs: Nodes in the network represent genes, and there is a directed edge from
gene g to gene g′ (where g′ may equal g) if the protein encoded by g affects the level of expression of the
protein encoded by g′.

A feed-forward loop (FFL) in a gene regulatory graph has three distinct nodes, say a, b, and c, and
has directed edges (a, b), (b, c), and (a, c), but not the directed edges (b, a), (c, b) or (c, a), and no self-loops
(a, a), (b, b) or (c, c). The actual feed-forward loops in the real network often ensure rapid, yet robust
responses to changes in the cellular environment, and are abundant in regulatory networks of all kinds
of organisms. Biologists are are interested in identifying FFLs (and other "motifs") in gene regulatory
networks, and figuring out what is their function.

We’ll define the FFL detection problem as follows: an instance of the problem is a directed graph
G = (V,E). The problem is to find all feed-forward loops in G.

1. Indicate which of the following (ignoring constants, i.e., using Θ notation) is the largest possible
number of FFLs that a network with n nodes might have, as a function of n.

If you are using LATEX (please do!) just change \fillinMCmath to \fillinMCmathsoln for your choice
of answer. This will make it much simpler for us to grade this question.

n n2 n3 n4 2n 3n

2. Using pseudocode, describe a brute force algorithm that solves the FFL detection problem. Your
pseudocode should be at a level of detail that ignores implementation decisions such as how the graph
is represented.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


3. Suppose that the input graph is represented by an adjacency matrix. Using Θ notation, give the
running time of an efficient implementation of your algorithm in the worst case.

n n2 n3 n4 2n 3n

4. [Challenge, not graded]: Suppose that the input graph is represented by adjacency lists. Using big-O
notation, give the running time of your algorithm in the worst case.

n n2 n3 n4 2n 3n

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


2 Kidney Exchange

Our description of this problem here is identical to that in Quiz 2. We recommend looking at the quiz
problems (and, once you’ve tried them yourself, also look at the solutions) before working on this problem.

Kidney transplant is a life-saving procedure for people with kidney disease. Ideally, a kidney transplant
patient identifies a living donor who can donate a kidney that is highly compatible with the patient, e.g.,
the patient and donor have the same blood type. The living donor will function just fine with their one
remaining kidney, and hopefully the patient will be healthy with the donated kidney.

Often however, when a patient p finds a willing donor d, d may not be highly compatible with p. Given
that there may be many such (donor, patient) pairs seeking transplants, it’s natural to ask if the donors
could be reallocated to the patients so that all patients are better off, i.e., are matched with more compatible
donors. The goal of kidney exchange is find an alternative matching that is better. Here we’ll formulate
the kidney exchange problem in a simple way.

We’ll define an instance of the KEP, the Kidney Exchange Problem, as follows. There is a set M of
n initial (donor, patient) matches (d, p) (that is, M is a perfect matching of donors and patients). Let D
be the set of n donors and P the set of n patients that are matched in M . Each patient p has a complete
ranking R[p] of donors; the donor d initially matched with p may not be at the top of p’s list.

A problem instance is a tuple (n,M,R), where n is the number of patients (and also the number of
donors), M is the initial perfect matching of patients and donors, and R is the collection of rankings R[p]
for each of the n patients p.

For an instance I of KEP:

• The best-preference graph GI is as follows: the nodes are pairs (d, p). There is a directed edge
from (d, p) to (d′, p′) if d′ is the most highly ranked donor on p’s preference list.

• A valid solution S for I is any perfect matching of donors and recipients.

• An instability is a subset B of pairs of S such that a reallocation of donors of recipients in B would
result in a solution S′ in which all recipients are strictly better off than they are in S, that is, all are
matched with a donor higher on their preference list.

Here is a small instance (3,M,R), where:

• M is the perfect matching d1:p1, d2:p2, d3:p3

• R is given by:

R[p1]: r2,r3,r1
R[p2]: r1,r2,r3
R[p3]: r1,r3,r2

1. Show a valid solution with an instability for this instance, and write down what is the instability.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


2. Trace through an execution of the following algorithm for KEP on the above instance, showing what
M and S are just before the first iteration of the While loop, and also after each iteration of the While
loop.

Algorithm Exchange (I = (n,M,R))
Initialize S to be the empty set
While n > 0

Create the best-preference graph GI for instance I
Find a directed cycle in GI , say v1, v2, ..., vk = v1
Let vi be the pair (di, pi), for 1 ≤ i < k
Update instance I as follows:

Remove the pairs (di, pi) from M , 1 ≤ i < k
Remove di from all patient rankings in R, 1 ≤ i < k
Set n to n− k + 1

Add the pairs (di+1, pi) to S for 1 ≤ i < k − 1, and also add the pair (d1, pk−1) to S
Endwhile
Return S

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


3. Explain why algorithm Exchange always produces a solution with no instability. Hint: Let I =
(n,M,R) be any instance and S the solution produced. Let B be any subset of S, i.e., a potential
instability. Let PB be the patients that are matched in B. Let Vi be the nodes in the directed cycle
of iteration i. Let l be the first iteration in which Vl ∩ B 6= ∅, with recipient p ∈ PB being allocated
a donor in the iteration l. Explain why no reallocation among the donors in B can make p strictly
better off.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


3 Oh Graphs (again)

1. As seen in one of the Quiz 2 instances, the worst-case number of topological orderings of a connected,
directed acyclic graph (DAG) G with n nodes is (n − 1)!. Show how to construct DAGs that have
this number of topological orderings.

2. [Challenge, not graded]: prove that (n − 1)! is the worst-case number of topological orderings of a
DAG with n nodes.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


3. Describe an O(n) time algorithm to determine if a given graph G = (V,E) is a star. A star has one
central node that is adjacent (i.e., has an edge to) to all other nodes, and no other pair of nodes are
adjacent. Assume that G is stored using an adjacency list data structure, and that the only way to
determine the number of neighbours of a node N is to traverse its list of neighbours.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


4. In the quiz, we assumed that each graph G was stored using an adjacency list data structure, and that
the only way to determine the number of neighbours of a node N was to traverse its list of neighbours.
For this question, suppose now that the list of neighbours for each node is stored in something like
Java’s ArrayList, whose length is available in Θ(1) time.

What is the worst-case running time of the most efficient algorithm to solve each of the following
problems for a given undirected graph G = (V,E) with n nodes and m edges, under this new assump-
tion?

If you are using LATEX (please do, especially for this question!a) just change \fillinMCmath to
\fillinMCmathsoln for your choice of answer. This will make it *much *simpler for us to grade the
question.

• Given two nodes i and j of G, determine if they are adjacent.
n nm

n log n n2m

n2 nm2

n + m None of these

• Determine if G is an n-clique (in an n-clique, all pairs of nodes are adjacent).
n nm

n log n n2m

n2 nm2

n + m None of these
• Determine if G is a star.

n nm

n log n n2m

n2 nm2

n + m None of these
• Find a node of G that is as close as possible to every other node of G. That is, you want to find

a node N that minimizes d(N) = max{y ∈ V, dist(N, y)}, where dist(N, y) is the length of the
shortest path (path with fewest edges) connecting N to y.

n nm

n log n n2m

n2 nm2

n + m None of these

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


5. Several fundamental algorithms for traversing or determining properties of directed and undirected
graphs and trees are presented in Chapter 2 of the text, including depth first search (DFS), breadth
first search (BFS), computing a topological ordering of nodes in a directed graph, testing if an undi-
rected graph is connected, testing if a directed graph is strongly connected, finding connected com-
ponents or strongly connected components, testing bipartiteness. Describe which of these algorithms
would be most appropriate to solve the following problem and what its running time would be as a
function of an appropriately chosen instance size.

Related Sites: We would like to determine the n web sites that one is most likely to get to, starting
from a given starting site.

• Graph model of problem instance:

– Nodes:
– Edges:

• Measure of instance size:

• Good solution specification:

• Well-known algorithm that can find a good solution:

• Running time:

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

	Feed Forward Loops
	Kidney Exchange
	Oh Graphs (again)

