CPSC 320 2018W1: Assignment 1

September 13, 2018

Please submit this assignment via |GradeScope| at https://gradescope.com. Be sure to identify ev-
eryone in your group if you're making a group submission. (Reminder: groups can include a maximum of
three students; we strongly encourage groups of two.)

Submit by the deadline Saturday 22 September at 10PM. For credit, your group must make a
single submission via one group member’s account, marking all other group members in that submission
using GradeScope’s interface. Your group’s submission must:

e Be on time.

e Consist of a single, clearly legible file uploadable to GradeScope with clearly indicated solutions to
the problems. (PDFs produced via TEX, Word, Google Docs, or other editing software work well.
Scanned documents will likely work well. High-quality photographs are OK if we agree they're
legible.)

e Include prominent numbering that corresponds to the numbering used in this assignment handout
(not the individual quizzes). Put these in order starting each problem on a new page, ideally. If not,
very clearly and prominently indicate which problem is answered where!

e Include at the start of the document the ugrad.cs.ubc.ca e-mail addresses of each member of
your team. (Please do NOT include your name on the assignment, however.E[)

e Include at the start of the document the statement: "All group members have read and followed
the guidelines for academic conduct in CPSC 320. As part of those rules, when collaborating with
anyone outside my group, (1) I and my collaborators took no record but names (and GradeScope
information) away, and (2) after a suitable break, my group created the assignment T am submitting
without help from anyone other than the course staff." (Go read those guidelines!)

e Include at the start of the document your outside-group collaborators’ ugrad.cs.ubc.ca IDs, but not
their names. (Be sure to get those IDs when you collaborate!)

Before we begin, a few notes on pseudocode throughout CPSC 320: Your pseudocode need not compile
in any language, but it must communicate your algorithm clearly, concisely, correctly, and without irrelevant
detail. Reasonable use of plain English is fine in such pseudocode. You should envision your audience as a
capable CPSC 320 student unfamiliar with the problem you are solving. If you choose to use actual code,
note that you may neither include what we consider to be irrelevant detail nor assume that we understand
the particular language you chose. (So, for example, do not write #include <iostream> at the start of
your pseudocode, and avoid idiosyncratic features of your language like Java’s ternary (question-mark-colon)
operator.)

'Tf you don’t mind private information being stored outside Canada and want an extra double-check on your identity,
include your student number rather than your name.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. @®&®
For license purposes, the author is the University of British Columbia.

https://gradescope.com/
https://gradescope.com
http://blogs.ubc.ca/cpsc3202017W1/syllabus/#conduct
http://creativecommons.org/licenses/by-nc/4.0/

1 Looping Back to Asymptotic Analysis

In this problem, if you need to work with indexes, assume 0-based indexing, i.e., the first element of an
array A of length n is A[0] while the last is A[n — 1].

Answer each of the following:
1. What common algorithm would you use to determine if no one was born in 19807

2. Complete the pseudocode function below for an algorithm that runs in worst-case linear time and
returns the number of dates of birth that are repeated (appear more than once) in a sorted array:

// Given a sorted array A containing dates of birth, return the number of
// dates of birth that appear more than once
CountRepeatedBirthDates(A):

3. Suppose that instead of having each array element be a birth date, the positions in (i.e., the indexes
to) the array are the dates, and that an array element is a possibly empty list of famous people born
on that day (you can assume that the length of such a list is available in constant time). Show how,
after constructing another array of the same length in O(n) time, you can then determine how many
people were born between date x and date y in O(1) time.

2 Knowing Your Structures

1. Describe an algorithm with O(nlgn) worst case running time to insert the elements 1 to n in a
binary search tree that is not self-balancing (that is, no special care is taken by the insert and
delete operations to keep the tree balanced).

2. Let T be a binary search tree with n keys. Counting the number of keys « of T' such that k1 < z < ko
for some given parameters k; and ks requires Q(n) time in the worst case, even if T' is balanced (like
an AVL tree). Suppose that we store in each node N of the tree the size of the subtree rooted at N.
Precisely describe an algorithm that uses this information to count in O(logn) time the number of
keys x of T such that k1 < z < ko for some given parameters k; and ko. Hint: how would you find
the number of elements of T that are smaller than k7

3. If we were to store in each node N of the tree from question 2 the number of elements of T' that are
smaller than the key stored at N, we could find even more easily the number of keys x of T" such
that k1 < x < ko for some given parameters k1 and k9. Explain why this is not a good solution (the
reasons are not directly related to the counting problem from question 2).

3 Incomplete ranking

The SMPI (the Stable Matching Problem with Incomplete Lists) was defined in Quiz 1. SMPI is a natural
variant of SMP in which there are n hospitals and n residents but preference lists may be incomplete—that
is, hospitals need not rank all residents, and residents need not rank all hospitals. An hospital cannot be
matched to a resident that is not on its preference list, nor can a resident be matched with a hospital not
on the resident’s preference list. Like on the quiz, we assume that each hospital has exactly one slot
available.

An instance of SMPI is a tuple (n, Py, Pg) where

e 1 is the number of hospitals and also the number residents,

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. @®&®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

e Py is the set of preference lists of the hospitals: for each hospital h, Pg[h] is a list that ranks a subset

of the residents, and

e Ppg is the set of preference lists of the residents: for each resident r, Pr[r| is a list that ranks a subset

of the hospitals.

Let’s define a valid solution of SMPI to be a matching S such that for each pair (h,r) in S, r is in
the list Py [h] and h is in the list Pr[r].

1.

Suppose that each preference list of an hospital or resident has size just 2. In this case, does the
number of valid solutions scale polynomially or exponentially with n in the worst case? (Don’t forget
to justify your answer.)

. Describe how to construct an instance with n hospitals and residents, for any n, for which each

preference list of an hospital or resident has size 2 but there is only one valid solution, namely the
empty matching.

. Given an instance I of SMPI, a pre-processing step of an algorithm could be to repeat the following

until neither of the rules apply:

Rule 1 If for some pair h and r, h is on r’s list but r is not on A’s list, then remove h from r’s list
Rule 2 If for some pair h and r, r is on h’s list but A is not on r’s list, then remove r from h’s list
Let I’ be the instance after this pre-processing step. Fill in the circle with the best answer for the

following statements, where I is some instance of SMPI and I’ is the result of the pre-processing step
applied to I.

The set of stable matchings of I and I’ are identical.

O Yes O No

The set of valid matchings of I and I’ are identical.

O Yes O No

. Generalize the Gale-Shapley Algorithm so that it solves SMPI.
. Explain briefly why your algorithm always terminates and outputs a stable matching.

. Show that for any instance of SMPI, all stable matchings have the same size and involve exactly the

same hospitals and exactly the same residents (note that they may however be matched differently).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. @®&®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

	Looping Back to Asymptotic Analysis
	Knowing Your Structures
	Incomplete ranking

