CPSC 320: Tutorial 7

1. (from Problem 34-1 CLRS) An independent set of a graph $G=(V, E)$ is a subset $S \subset V$ of vertices such that no two vertices in S are joined by an edge. We want to find the maximum size independent set in G, but all our attempts at an efficient algorithm have failed.

- Specify a related decision problem for this problem and prove that it is NP-complete. (Hint: Reduce from CLIQUE.)
- How would you use an efficient algorithm for your decision problem to solve the original problem efficiently? In other words, can you find a maximum size independent set efficiently by using a black box that efficiently solves your decision problem?
- What does this say about the likelihood of finding an efficient algorithm for the original problem?

2. A k-clique in a graph is a set of k vertices which induce a k -complete graph. The question of whether a k-clique exists in a graph is, in general NP-complete.
Prove by reduction that CLIQUE is NP-complete.
3. (from Problem 34-3 CLRS) Graph colouring

A k-colouring of an undirected graph $G=(V, E)$ is a function $c: V \longrightarrow$ $\{1,2, \ldots k\}$ such that $c(u) \neq c(v)$ for every edge $(u, v) \in E$. In other words, the numbers $1,2, \ldots, k$ represent the k colours, and adjacent vertices must have different colours. The graph-colouring problem is to determine the minimum number of colours needed to colour a given graph.

- Cast the graph-colouring problem as a decision problem. Show that your decision problem is solvable in polynomial time if and only if the graph-colouring problem is solvable in polynomial time.
- Let the language 3 -colour be the set of graphs that can be 3coloured. Show that if 3 -colour is NP-complete, then your decision problem is NP-complete.

To prove that 3 -colour is NP-complete, we use a reduction from 3SAT. Given a formula ϕ of m clauses on n variables $x_{1}, x_{2}, \ldots, x_{n}$, we construct a graph $G=(V, E)$ as follows. The set V consists of a vertex for each variable, a vertex for the negation of each variable, 5 vertices for each clause, and 3 special vertices: TRUE, FALSE, and RED. The edges of the graph are of two types: "literal" edges that are independent of the clauses and "clause" edges that depend on the clauses. The literal edges form a triangle on the special vertices and also form a triangle on $x_{i}, \overline{x_{i}}$, and RED for $i=1,2, \ldots, n$.

- In any 3 -colouring c of a graph containing the literal edges, exactly one of a variable and its negation is coloured c (TRUE) and the other is coloured c (FALSE). Why?
- Any truth assignment (whether it satisfies ϕ or not) corresponds to a 3 -colouring of the graph formed from just the literal edges. Why?

The widget shown below is used to enforce the condition corresponding to a clause $(x \vee y \vee z)$. Each clause requires a unique copy of the 5 vertices that are heavily shaded in the figure; they connect as shown to the literals of the clause and the special vertex TRUE.

- Argue that if each of x, y, and z is coloured c (TRUE) or c (FALSE), then the widget is 3 -colourable if and only if at least one of x, y,

```
or \(z\) is coloured \(c\) (TRUE).
```

- Complete the proof that 3-colour is NP-complete.

