
CPSC 320: Tutorial 3

1. Let A be an array of n distinct integers. In this problem, we are
interested in finding the longest increasing subsequence of A. That is,
we want to find elements A[i1], A[i2], ...A[it] such that i1 < i2 < ... <

it, A[i1] < A[i2] < ... < A[it], and t is as big as possible.

For instance, if A = (1, 9, 17, 5, 8, 6, 4, 7, 12, 3), then both (1, 9, 17) and
(1, 5, 6, 7, 12) are increasing subsequences. Note that the subsequence
given by the greedy algorithm, that is the subsequence (1, 9, 17), is not
the longest one.

In order to find the longest increasing subsequence in the array, you can
compute for each position i the length L[i] of the longest subsequence
that ends with element A[i].

• Give a recurrence relation that expresses L[i] as a function of
L[j] for values of j that are smaller than i. Hints: you need
to consider the position of the previous element of the longest
increasing subsequence.

• Write pseudo-code for an algorithm that finds the longest increas-
ing subsequence of an array with n elements.

• What are the space and time complexities of your algorithm?
How do these compare to a brute-force approach?

2. Given an unlimited number of coins with denominations x1, x2, ...xn,
and an amount A, find the minimum number of coins needed to make
the amount A or output “impossible” if amount A cannot be made.
Your algorithm should run in time O(nA). Why doesn’t greedy work?

3. Consider the binary operator @ defined by the following “addition”
table:

@ 1 2 3

1 2 2 1

2 3 2 1

3 1 3 3

Note that @ is not associative, and that it is not commutative either
(for instance 1 @ 2 = 2, but 2 @ 1 = 3).
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Design an efficient algorithm that takes in an expression x1@x2@x3@...@xn,
where each xi is either 1, 2 or 3, and determines if it is possible to in-
sert parentheses in that expression so it evaluates to 1. For instance,
your algorithm should return YES for 2 @ 2 @ 2 @ 2 @ 1, since (2 @
(2 @ 2)) @ (2 @ 1) = 1.

Analyze the running time and space of your algorithm.
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