CPSC 320: Tutorial 3

1. Let A be an array of n distinct integers. In this problem, we are interested in finding the longest increasing subsequence of A. That is, we want to find elements $A[i 1], A[i 2], \ldots A[i t]$ such that $i_{1}<i_{2}<\ldots<$ $i_{t}, A\left[i_{1}\right]<A\left[i_{2}\right]<\ldots<A\left[i_{t}\right]$, and t is as big as possible.

For instance, if $A=(1,9,17,5,8,6,4,7,12,3)$, then both $(1,9,17)$ and $(1,5,6,7,12)$ are increasing subsequences. Note that the subsequence given by the greedy algorithm, that is the subsequence $(1,9,17)$, is not the longest one.
In order to find the longest increasing subsequence in the array, you can compute for each position i the length $L[i]$ of the longest subsequence that ends with element $A[i]$.

- Give a recurrence relation that expresses $L[i]$ as a function of $L[j]$ for values of j that are smaller than i. Hints: you need to consider the position of the previous element of the longest increasing subsequence.
- Write pseudo-code for an algorithm that finds the longest increasing subsequence of an array with n elements.
- What are the space and time complexities of your algorithm? How do these compare to a brute-force approach?

2. Given an unlimited number of coins with denominations $x_{1}, x_{2}, \ldots x_{n}$, and an amount A, find the minimum number of coins needed to make the amount A or output "impossible" if amount A cannot be made. Your algorithm should run in time $O(n A)$. Why doesn't greedy work?
3. Consider the binary operator @ defined by the following "addition" table:

$@$	1	2	3
1	2	2	1
2	3	2	1
3	1	3	3

Note that @ is not associative, and that it is not commutative either (for instance 1 @ $2=2$, but $2 @ 1=3$).

Design an efficient algorithm that takes in an expression $x_{1} @ x_{2} @ x_{3} @ \ldots @ x_{n}$, where each xi is either 1,2 or 3 , and determines if it is possible to insert parentheses in that expression so it evaluates to 1 . For instance, your algorithm should return YES for $2 @ 2 @ 2 @ 2 @ 1$, since $(2 @$ $(2 @ 2)) @(2 @ 1)=1$.
Analyze the running time and space of your algorithm.

