CPSC 320: Tutorial 4

1. Suppose that we are given an array A of n integers, and an integer k. Describe an algorithm that will find the k elements of A closest numerically (not by their order statistics) to the median of A. The running time of your algorithm should be $O(n)$.

Hint: How can you write, mathematically, that an element x is closer numerically to the median m than another element y ?
2. The algorithm GoodPivot divides its n element input array A into $n / 5$ groups of 5 elements each (and maybe one group with less than 5 elements). This allowed us to prove that there were at least $3 n / 10-6$ input elements less than the pivot. We then used this fact to derive a recurrence relation that upper bounds the running time of the algorithm deterministic select and established a $O(n)$ upper bound on the solution of that recurrence.
Suppose that we had decided to divide the input elements into $n / 3$ groups of 3 elements each instead. How many element are guaranteed to be less than the pivot? Justify your answer.
Derive a recurrence relation that upper bounds the running time of this new version of deterministic select. What is the best upper bound you can get for the solution of this recurrence?

If you have time, do the same for groups of 7 elements.

