
CPSC 320: Tutorial 2

1. Suppose you play the following game. You start with a pile of n stones. You divide the stones
into two smaller piles. If the two smaller piles are of size a and b, you write down the product
ab and repeat this process on any pile with more than one stone. Eventually, you produce
n piles each with one stone. The sum of the numbers you write down is your score. What
strategy should you follow to maximize your score? Hint: Try small examples. You should
see a pattern. Prove it by induction.

Here’s a big example with 10 stones:

10

3 7

1 2 4 3

3 1 2 1

1 11 2

1 1

1 1

3× 7 = 21

1× 2 = 2 4× 3 = 12

1 3

2

2

1

1

21 + 2 + 12 + 1 + 3 + 2 + 2 + 1 + 1 = 45

2. Analyze the running time of the following algorithm as a function of n, assuming that each
arithmetic operation and comparison takes constant time. Use Θ notation to express your
result as simply as possible. Give an informal argument (not necessarily a full proof) to
support your answer.

Foo(n)
i = 0
sum = 0
while (sum < n)

i = i + 1
sum = sum + i

return i

1



3. Suppose someone draws n (infinitely long) lines on a piece of (infinitely big) paper. The lines
divide the paper into regions. Describe an algorithm that colors the regions either black or
white so that no two regions with a common boundary are the same color. The following is
an example of a good coloring. Hint: Use an input consuming idea.

4. Give a recurrence relation for the running time of the following really bad sorting algorithm.

SnailSort(A, p, r)
//
// A is an array, p and r are positions in the array.
//
if A[p] > A[r] then

exchange A[p] and A[r]
endif

if (p + 1 < r) then
q := floor ((r - p + 1) / 3)
SnailSort(A, p + q, r) // sort the last two-thirds
SnailSort(A, p, r - q) // sort the first two-thirds
SnailSort(A, p + q, r) // sort the last two-thirds again

endif

2


