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Splay Trees

• Problems with AVL Trees

– extra storage/complexity for height fields

– ugly delete code

• Solution: splay trees

– blind adjusting version of AVL trees

– amortized time for all operations is O(log n)

– worst case time is O(n)

– insert/find always rotates node to the root!

Idea
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You’re forced to make 

a really deep access:
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a really deep access:

Since you’re down there anyway,

fix up a lot of deep nodes!
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Splaying Example
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Find(6)
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Still Splaying 6
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Almost There, Stay on Target
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Splay Again
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Example Splayed Out

zig-zag

6

1 61

4

4

3 5

2

3 5

2

How do you actually do 

Insert/Delete?

You do a splay or two plus some slightly tricky stuff 

that’s still far easier than AVL, 2-3, B, B+, or 

Red-Black trees.  Not especially relevant here.


