
CPSC 320: Intermediate

Algorithm Design & AnalysisAlgorithm Design & Analysis

Splay Trees (for Amortized Analysis)

Steve Wolfman

1

Splay Trees

• Problems with AVL Trees

– extra storage/complexity for height fields

– ugly delete code

• Solution: splay trees

– blind adjusting version of AVL trees

– amortized time for all operations is O(log n)

– worst case time is O(n)

– insert/find always rotates node to the root!

Idea

17

10

You’re forced to make

a really deep access:

92

5

3

a really deep access:

Since you’re down there anyway,

fix up a lot of deep nodes!

Zig-Zig

n

p

g

p
Z

Y

p

X

g

W

W

X

p

Y

n

Z

Zig-Zag

g

p

n

X
p

Y

n

Z

W

Y

g

W

p

ZX

Zig

p n

root root

X

n

Y

Z

Z

p

Y

X

Splaying Example

2

1

2

1

zig-zig

3

4

5

6

Find(6)

3

6

5

4

Still Splaying 6

zig-zig

2

1 1

6

3

6

5

4

3

2 5

4

Almost There, Stay on Target

zig

1

6

6

1

3

2 5

4

3

2 5

4

Splay Again

zig-zag

6

1

6

1

Find(4)

3

2 5

4

4

3 5

2

Example Splayed Out

zig-zag

6

1 61

4

4

3 5

2

3 5

2

How do you actually do

Insert/Delete?

You do a splay or two plus some slightly tricky stuff

that’s still far easier than AVL, 2-3, B, B+, or

Red-Black trees. Not especially relevant here.

