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Problem-Solving Approaches

Many problems can be solved by the same 

broad style of approach.  We’ll run into several 

of these styles:

– Input consuming (like insertion sort)– Input consuming (like insertion sort)

– Output producing (like selection sort)

– Divide-and-Conquer (like merge sort)

– Greedy (like change-making)

– Dynamic Programming
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Optimization Problems

In an optimization problem, we want to report 

a* best answer according to some metric (i.e., 

a function that maps correct solutions to their 

value, where lower values are better).value, where lower values are better).

Example: coin changing.  Given an amount of 

change to make, give that amount of change 

with the fewest coins.

3* Why do we say “a best answer” and not “the best answer”?

Greedy (and not) Coin Changing

• Coin changing with Cdn coins: 
penny, nickel, dime, quarter

– Repeatedly add the largest coin that “fits” in the 
change remaining to be made.

• Coin changing with Cdn coins but no nickels:• Coin changing with Cdn coins but no nickels:
penny, dime, quarter

– Does the algorithm above work?  (Try $0.30.)

• Coin changing with Cdn coins plus the bauxel:
penny, nickel, dime, bauxel ($0.15), quarter

– Is there only one best solution?  (Try $0.30.)
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Greedy Algorithms

• Repeatedly make the “locally best choice” 

until the choices form a complete solution.
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More Greedy (or not) Problems

• Activity Selection

• Minimum Spanning Tree

• Shortest Path

6The latter two are graph problems; so, some graph review is in order...



Interesting Properties for 

Greedy Algorithms

• Optimal substructure: An optimal solution to 

the problem is composed of pieces which are 

themselves optimal solutions to subproblems.

• Greedy-choice property: locally optimal 

(greedy) choices can be extended to a globally 

optimal solution.
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Graph ADT

Graphs are a formalism useful for representing 

relationships between things

– a graph G is represented as 
G = (V, E)

• V is a  set of vertices: {v1, v2, …, vn}

Han

Leia

Luke

• E is a set of edges: {e1, e2, …, em} where 

each ei connects two vertices (vi1, vi2)

– operations might include:

• creation (with a certain number of vertices)

• inserting/removing edges

• iterating over vertices adjacent to a specific vertex

• asking whether an edge exists connecting two vertices

Leia

V = {Han, Leia, Luke}

E = {(Luke, Leia), 

(Han, Leia), 

(Leia, Han)}
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Graph Applications

• Storing things that are graphs by nature

– distance between cities

– airline flights, travel options

– relationships between people, things– relationships between people, things

– distances between rooms in Clue

• Compilers

– callgraph - which functions call which others

– dependence graphs - which variables are defined and 

used at which statements

• Others: mazes, circuits, class hierarchies, horses, 

networks of computers or highways or…
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Graph Representations

• 2-D matrix of vertices (marking edges in the cells)

“adjacency matrix”

Han

Leia

Luke

• List of vertices each with a list of adjacent vertices

“adjacency list”
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Adjacency Matrix

A |V| x |V| array in which an element (u, v) 

is true if and only if there is an edge from u to v

Han Luke Leia
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Leia

Luke
Han

Luke

Leia

runtime for various operations? space requirements: 11

Adjacency List

A |V|-ary list (array) in which each entry stores a 

list (linked list) of all adjacent vertices

Han

Leia

Luke
Han

Luke

Leia

space requirements: 12runtime for various operations?



Directed vs. Undirected Graphs

• Adjacency lists and matrices both work fine to 

represent directed graphs. 

• To represent undirected graphs, either ensure that 

both orderings of every edge are included in the 

representation or ensure that the order doesn’t matter 

(e.g., always use a “canonical” order), which works 

poorly in adjacency lists.
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Weighted Graphs
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As far as we’re concerned, weight is a 

function from the set of nodes to the reals.
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Unweighted Shortest Path Problem

Assume source vertex is C… 
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Spanning tree: a subset of the edges from a 

connected graph that…

…touches all vertices in the graph (spans the graph)

…forms a tree (is connected and contains no cycles)

Spanning Tree

…forms a tree (is connected and contains no cycles)

Minimum spanning tree: the spanning tree with the 

least total edge cost.
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Prim’s Algorithm Sample Graph
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Kruskal’s Algorithm Sample Graph
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What’s Next?

• Dynamic Programming: CLRS Chapter 15

20

On Your Own

• Review graphs

• Practice designing and analyzing greedy 

algorithms for optimality/performance.

• Play around with problems to see when small • Play around with problems to see when small 

changes can keep a greedy algorithm from 

working (like dropping nickels from coin 

changing).
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