
CPSC 320: Intermediate

Algorithm Design & AnalysisAlgorithm Design & Analysis

Greedy Algorithms and Graphs

Steve Wolfman

1

Problem-Solving Approaches

Many problems can be solved by the same

broad style of approach. We’ll run into several

of these styles:

– Input consuming (like insertion sort)– Input consuming (like insertion sort)

– Output producing (like selection sort)

– Divide-and-Conquer (like merge sort)

– Greedy (like change-making)

– Dynamic Programming

2

Optimization Problems

In an optimization problem, we want to report

a* best answer according to some metric (i.e.,

a function that maps correct solutions to their

value, where lower values are better).value, where lower values are better).

Example: coin changing. Given an amount of

change to make, give that amount of change

with the fewest coins.

3* Why do we say “a best answer” and not “the best answer”?

Greedy (and not) Coin Changing

• Coin changing with Cdn coins:
penny, nickel, dime, quarter

– Repeatedly add the largest coin that “fits” in the
change remaining to be made.

• Coin changing with Cdn coins but no nickels:• Coin changing with Cdn coins but no nickels:
penny, dime, quarter

– Does the algorithm above work? (Try $0.30.)

• Coin changing with Cdn coins plus the bauxel:
penny, nickel, dime, bauxel ($0.15), quarter

– Is there only one best solution? (Try $0.30.)

4

Greedy Algorithms

• Repeatedly make the “locally best choice”

until the choices form a complete solution.

5

More Greedy (or not) Problems

• Activity Selection

• Minimum Spanning Tree

• Shortest Path

6The latter two are graph problems; so, some graph review is in order...

Interesting Properties for

Greedy Algorithms

• Optimal substructure: An optimal solution to

the problem is composed of pieces which are

themselves optimal solutions to subproblems.

• Greedy-choice property: locally optimal

(greedy) choices can be extended to a globally

optimal solution.

7

Graph ADT

Graphs are a formalism useful for representing

relationships between things

– a graph G is represented as
G = (V, E)

• V is a set of vertices: {v1, v2, …, vn}

Han

Leia

Luke

• E is a set of edges: {e1, e2, …, em} where

each ei connects two vertices (vi1, vi2)

– operations might include:

• creation (with a certain number of vertices)

• inserting/removing edges

• iterating over vertices adjacent to a specific vertex

• asking whether an edge exists connecting two vertices

Leia

V = {Han, Leia, Luke}

E = {(Luke, Leia),

(Han, Leia),

(Leia, Han)}

8

Graph Applications

• Storing things that are graphs by nature

– distance between cities

– airline flights, travel options

– relationships between people, things– relationships between people, things

– distances between rooms in Clue

• Compilers

– callgraph - which functions call which others

– dependence graphs - which variables are defined and

used at which statements

• Others: mazes, circuits, class hierarchies, horses,

networks of computers or highways or…
9

Graph Representations

• 2-D matrix of vertices (marking edges in the cells)

“adjacency matrix”

Han

Leia

Luke

• List of vertices each with a list of adjacent vertices

“adjacency list”

10

Adjacency Matrix

A |V| x |V| array in which an element (u, v)

is true if and only if there is an edge from u to v

Han Luke Leia

Han

Leia

Luke
Han

Luke

Leia

runtime for various operations? space requirements: 11

Adjacency List

A |V|-ary list (array) in which each entry stores a

list (linked list) of all adjacent vertices

Han

Leia

Luke
Han

Luke

Leia

space requirements: 12runtime for various operations?

Directed vs. Undirected Graphs

• Adjacency lists and matrices both work fine to

represent directed graphs.

• To represent undirected graphs, either ensure that

both orderings of every edge are included in the

representation or ensure that the order doesn’t matter

(e.g., always use a “canonical” order), which works

poorly in adjacency lists.

13

Weighted Graphs

20

Mukilteo
Clinton

Each edge has an associated weight or cost.

30

35

60

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

As far as we’re concerned, weight is a

function from the set of nodes to the reals.
14

Unweighted Shortest Path Problem

Assume source vertex is C…

A B F H

C

D

G

E

Distance to: A B C D E F G H

Weighted Shortest Path

A

C

B F H

G

2 2 3

2
1

4

10

8

1
1

9
4

C

D
E 1

82

7

Spanning tree: a subset of the edges from a

connected graph that…

…touches all vertices in the graph (spans the graph)

…forms a tree (is connected and contains no cycles)

Spanning Tree

…forms a tree (is connected and contains no cycles)

Minimum spanning tree: the spanning tree with the

least total edge cost.

4 7

1 5

9

2

Prim’s Algorithm Sample Graph

A B F H

2 2 3

2
110

1

94

C

D

G

E

1

4

10

8

94

2

7

Kruskal’s Algorithm Sample Graph

A B F H

2 2 3

2
110

1

94

C

D

G

E

1

4

10

8

94

2

7

What’s Next?

• Dynamic Programming: CLRS Chapter 15

20

On Your Own

• Review graphs

• Practice designing and analyzing greedy

algorithms for optimality/performance.

• Play around with problems to see when small • Play around with problems to see when small

changes can keep a greedy algorithm from

working (like dropping nickels from coin

changing).

21

