CPSC 320: Intermediate Algorithm Design \& Analysis

Greedy Algorithms and Graphs Steve Wolfman

Problem-Solving Approaches

Many problems can be solved by the same broad style of approach. We'll run into several of these styles:

- Input consuming (like insertion sort)
- Output producing (like selection sort)
- Divide-and-Conquer (like merge sort)
- Greedy (like change-making)
- Dynamic Programming

Optimization Problems

In an optimization problem, we want to report a^{*} best answer according to some metric (i.e., a function that maps correct solutions to their value, where lower values are better).

Example: coin changing. Given an amount of change to make, give that amount of change with the fewest coins.

Greedy (and not) Coin Changing

- Coin changing with Cdn coins:
penny, nickel, dime, quarter
- Repeatedly add the largest coin that "fits" in the change remaining to be made.
- Coin changing with Cdn coins but no nickels: penny, dime, quarter
- Does the algorithm above work? (Try \$0.30.)
- Coin changing with Cdn coins plus the bauxel: penny, nickel, dime, bauxel (\$0.15), quarter - Is there only one best solution? (Try \$0.30.)

Greedy Algorithms

- Repeatedly make the "locally best choice" until the choices form a complete solution.

More Greedy (or not) Problems

- Activity Selection
- Minimum Spanning Tree
- Shortest Path

Interesting Properties for Greedy Algorithms

- Optimal substructure: An optimal solution to the problem is composed of pieces which are themselves optimal solutions to subproblems.
- Greedy-choice property: locally optimal (greedy) choices can be extended to a globally optimal solution.

Graph ADT

Graphs are a formalism useful for representing relationships between things

- a graph cis represented as

$G=(\mathrm{V}, \mathrm{E})$

- V is a set of vertices: $\left\{\mathbf{v}_{1}, v_{2}, \ldots, v_{n}\right\}$
- E is a set of edges: $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ where
 each $\mathbf{e}_{\mathbf{i}}$ connects two vertices $\left(\mathbf{v}_{\mathbf{i} 1}, \mathbf{v}_{\mathrm{i} 2}\right) \quad \mathrm{V}=\{H a n$, Leia, Luke\}
- operations might include: $\mathbf{E}=$ \{(Luke, Leia),
- creation (with a certain number of vertices) (Han, Leia),
- inserting/removing edges
- iterating over vertices adjacent to a specific vertex
- asking whether an edge exists connecting two vertices

Graph Representations

- 2-D matrix of vertices (marking edges in the cells) "adjacency matrix"
- List of vertices each with a list of adjacent vertices "adjacency list"

Adjacency Matrix

$\mathrm{A}|\mathrm{V}| \mathbf{x}|\mathrm{V}|$ array in which an element (u, v) is true if and only if there is an edge from u to v

buntime for various operations? $\tilde{j}^{\text {bue }}$ lat adj

Adjacency List

A |V|-ary list (array) in which each entry stores a

Directed vs. Undirected Graphs

- Adjacency lists and matrices both work fine to represent directed graphs.
- To represent undirected graphs, either ensure that both orderings of every edge are included in the representation or ensure that the order doesn't matter (e.g., always use a "canonical" order), which works poorly in adjacency lists.

Weighted Graphs

Each edge has an associated weight or cost.

As far as we're concerned, weight is a function from the set of nodes to the reals.

Unweighted Shortest Path Problem

Assume source vertex is C...

Distance to:

$$
\begin{array}{llllllll}
\text { A } & \mathbf{B} & \mathbf{C} & \mathrm{D} & \mathrm{E} & \mathrm{~F} & \mathrm{G} & \mathrm{H}
\end{array}
$$

Weighted Shortest Path

Spanning Tree

Spanning tree: a subset of the edges from a connected graph that...
...touches all vertices in the graph (spans the graph)
...forms a tree (is connected and contains no cycles)

Minimum spanning tree: the spanning tree with the least total edge cost.

Prim's Algorithm Sample Graph

Kruskal's Algorithm Sample Graph

What's Next?

- Dynamic Programming: CLRS Chapter 15

On Your Own

- Review graphs
- Practice designing and analyzing greedy algorithms for optimality/performance.
- Play around with problems to see when small changes can keep a greedy algorithm from working (like dropping nickels from coin changing).

