
CPSC 320: Intermediate

Algorithm Design & AnalysisAlgorithm Design & Analysis

Divide & Conquer and Recurrences

Steve Wolfman

1

Problem-Solving Approaches

Many problems can be solved by the same

broad style of approach. We’ll run into several

of these styles:

– Input consuming (like insertion sort)– Input consuming (like insertion sort)

– Output producing (like selection sort)

– Divide-and-Conquer (like merge sort)

– Greedy

– Dynamic Programming

2

Divide-and-Conquer Approach

When a larger problem can be divided into

similar sub-problems, it’s often possible to

solve the larger problem by:

– dividing it into smaller pieces– dividing it into smaller pieces

– recursively solving the pieces

– assembling the larger solution from the smaller

ones

3

Merge Sort Reminder

How can we sort a list by divide-and-conquer?

– Break the list into two (roughly) equal-sized pieces

– Sort the pieces (using Merge Sort)

– Merge the two sorted lists back together– Merge the two sorted lists back together

We need a base case for the recursion to

“bottom out”!

Fortunately, any list of length 1 is already sorted.

4

Skyline Problem

5

Analyzing Iterative Algorithms

We label lines that take constant time and build

up summations to represent loops.

Together, these form an equation like T(n) that

indicates the number of “simple indicates the number of “simple

computational steps” to solve a problem of

size n.

6

Analyzing Recursive Algorithms

We label lines that take constant time and build up
summations to represent loops.

Together, these form an equation like T(n) that
indicates the number of “simple computational
steps” to solve a problem of size n.steps” to solve a problem of size n.

We already have a formula for how long a recursive
call takes: T(.)

Just add in a T(.) term with an appropriate size
argument based on how large a “piece” we pass
to the recursive call.

7

Recurrence Example: FindMax

FindMax(arr)

if arr.length == 1: return arr[0]

else: return larger of arr[0] and

FindMax(arr[1..arr.length-1])

T(1) <= b

T(n) <= c + T(n - 1) if n > 1

8

Recurrence Example: FindMax

T(1) <= b

T(n) <= c + T(n - 1) if n > 1

Analysis:Analysis:
T(n) <= c + c + T(n - 2) (by substitution)

T(n) <= c + c + c + T(n - 3) (by substitution, again)

T(n) <= kc + T(n - k) (extrapolating 0 < k ≤≤≤≤ n)

T(n) <= (n – 1)c + T(1) = (n – 1)c + b (for k = n – 1)

9

Analyzing Recurrence Relations:

Approaches

• Guess-and-Test
Guess the solution (magically), prove that it works by

induction.

Requires a magical guess!

• Repeated Substitution/Recursion Tree
Either repeatedly substitute the recursive definition for Either repeatedly substitute the recursive definition for

recursive terms or draw out the tree of recursive calls
generated, annotating each level by the time spent on that
level. Devise an expression for the total time.

• Master Method
Essentially a summary of common recursion tree patterns.

Completely mechanical, but does not always apply!

10

Analysis of Skyline Problem

11

More Examples + Pitfalls

• Skyline, Guess-and-Test T(n) ∈ O(n)

• T(n) = T(n/2) + T(n/2) + 1, T(1) = 1,

Guess-and-Test T(n) ∈ O(n)Guess-and-Test T(n) ∈ O(n)

• T(n) = 3T(n/4) + n2, T(1) = 1

• T(n) = T(n/2) + 1, T(1) = 1

12

Master Method: Context

Let a ≥ 1 and b > 1 be constants and

f(n) : N→ R+ and T(n) be defined by:

T(n) = aT(“n/b”) + f(n)T(n) = aT(“n/b”) + f(n)

where T(n) ∈ Θ(1) for sufficiently small n, and

“n/b” can be n/b or n/b.

13

Master Method: Cases

Assuming the previous slide’s context holds:

(1) If f(n) ∈
for some ε > 0, then T(n) ∈

(2) If f(n) ∈

)(
log ε−Ο abn

)(
log abnΘ

)(
log abnΘ

Dominated by

“leaf” cost.

(2) If f(n) ∈
then, T(n) ∈

(3) If f(n) ∈
for some ε > 0 and if af(“n/b”) ≤ cf(n) for

some constant c < 1 and sufficiently large n,
then T(n) ∈

14

)(
log abnΘ

)lg(
log

nn
abΘ

)(
log ε+Ω abn

))((nfΘ

“Balanced” cost.

Dominated by

“root” cost.

More Examples (if time available)

• Integer Multiplication

• Closest Pair of Points, 1-D

• Closest Pair of Points, 2-D

15

What’s Next?

• Selection (and a bit of Randomized

Algorithms): CLRS Chapter 9

16

On Your Own

• PRACTICE various analysis methods,

particularly use of recursion trees/repeated

substitution and the Master Method.

• MANY practice problems available in CLRS• MANY practice problems available in CLRS

• Review recursion

17

