
CPSC 320: Intermediate

Algorithm Design & AnalysisAlgorithm Design & Analysis

Asymptotic Notation: (O, Ω, Θ, o, ω)

Steve Wolfman

1

Analysis of Algorithms
• Analysis of an algorithm gives insight into how long the program runs

and how much memory it uses
– time complexity

– space complexity

• Analysis can provide insight into alternative algorithms

• Input size is indicated by a number n (sometimes there are multiple
inputs)

• Running time is a function of n (Z+ → R+) such as• Running time is a function of n (Z+ → R+) such as
T(n) = 4n + 5

T(n) = 0.5 n log n - 2n + 7

T(n) = 2n + n3 + 3n

• But...

2

We’ll be fast and loose on the “R+” part...

If the function goes negative, let’s assume it’s

actually some small positive constant.

Types of asymptotic analysis

• bound flavor
– upper bound (O, o)

– lower bound (Ω, ω)

– asymptotically tight (θ)

• analysis case
– worst case (adversary)

– average case– average case

– expected case

– best case

– “common” case

– “amortized”

• analysis quality
– loose bound (any true analysis)

– tight bound (no better bound which is asymptotically different)

3

Order Notation

• T(n) ∈ O(f(n)) if there are constants c and n0

such that T(n) ≤ c f(n) for all n ≥ n0

4

Big-O Practice

• Prove that n2/2 + 5n/2 ∈ O(n2)

• Prove that n2/2 + 5n/2 ∉ O(n)

• Prove that 3n ∉ O(2n)

5

Asymptotic Analysis Hacks

• Eliminate low order terms

– 4n + 5 ⇒ 4n

– 0.5 n log n - 2n + 7 ⇒ 0.5 n log n

– 2n + n3 + 3n ⇒ 2n– 2n + n3 + 3n ⇒ 2n

• Eliminate coefficients

– 4n ⇒ n

– 0.5 n log n ⇒ n log n

– n log (n2) = 2 n log n ⇒ n log n

6

Justifying the Hacks

7

More Order Notation

• T(n) ∈ O(f(n)) iff there are constants c ∈ R+ and
n0 ∈ Z+ such that T(n) ≤ c f(n) for all n ≥ n0

• T(n) ∈Ω (f(n)) iff there are constants c ∈ R+ and
n0 ∈ Z+ such that f(n) ≤ c T(n) for all n ≥ n0n0 ∈ Z such that f(n) ≤ c T(n) for all n ≥ n0

• T(n) ∈ θ(f(n)) iff T(n)∈O(f(n)) and T(n) ∈ Ω (f(n))

• T(n) ∈o(f(n)) iff for all constants c, there is a
constant n0 such that T(n) < c f(n) for all n ≥ n0

• T(n) ∈ω(f(n)) iff for all constants c, there is a
constant n0 such that T(n) > c f(n) for all n ≥ n0

8

For my 221ers...

I defined o and ω blatantly wrong!

Sorry �

Limits Definition of o/ω/Θ

• f(n) ∈ o(g(n)) iff

• f(n) ∈ Θ(g(n)) iff for some

constant 0 < c

0
)(

)(

lim =
∞→

ng

nf

n

c
ng

nf

n

=
∞→

)(

)(

lim

constant 0 < c

• f(n) ∈ ω(g(n)) iff

9

∞=
∞→

)(

)(

lim ng

nf

n

L’Hôpital’s Rule Reminder

If or

Then

0
0

)(

)(

lim =
∞→

ng

nf

n
∞

∞

∞→

=
)(

)(

lim ng

nf

n

dn

)(d

)(

lim
nf

nf
=Then

10

dn

)(d
dn

)(

)(

lim ngng

nf

n

=
∞→

Limits Practice

• Prove that 22n ∈ ω(nn)

• Prove that lg n ∈ o(n0.5)• Prove that lg n ∈ o(n0.5)

11

Complexity of Sorting Using

Comparisons as a Problem

Each comparison is a “choice point” in the

algorithm. You can do one thing if the

comparison is true and another if false. So,

the whole algorithm is like a binary tree…the whole algorithm is like a binary tree…

……

sorted!z < cc < dsorted!

a < da < b

x < y

……

yes no

yes no yes no

yes noyes no

12

Complexity of Sorting Using

Comparisons as a Problem

The algorithm spits out a (possibly different)

sorted list at each leaf. What’s the maximum

number of leaves?number of leaves?

……

sorted!z < cc < dsorted!

a < da < b

x < y

……

yes no

yes no yes no

yes noyes no

13

Complexity of Sorting Using

Comparisons as a Problem

There are n! possible permutations of a sorted

list (i.e., input orders for a given set of input

elements). How deep must the tree be to

distinguish those input orderings?distinguish those input orderings?

……

sorted!z < cc < dsorted!

a < da < b

x < y

……

yes no

yes no yes no

yes noyes no

14

Complexity of Sorting Using

Comparisons as a Problem

If the tree is not at least lg(n!) deep, then there’s

some pair of orderings I could feed the algorithm

which the algorithm does not distinguish. So, it

must not successfully sort one of those two

orderings. orderings.

……

sorted!z < cc < dsorted!

a < da < b

x < y

……

yes no

yes no yes no

yes noyes no

15

Complexity of Sorting Using

Comparisons as a Problem

QED: The complexity of sorting using comparisons
is Ω(lg (n!)) in the worst case, regardless of
algorithm!

In general, we can lower-bound but not upper-
bound the complexity of problems.

(Why not? Because I can give as crappy an
algorithm as I please to solve any problem.)

16

Ω Practice:

Find a Good Bound for lg (n!)

17

More Practice:

Find Θ-Bound for lg (n!)

(This isn’t tightly related to our decision tree

proof, except that it shows our Ω-bound is

tight.)

18

What’s Next?

• Divide and Conquer Algorithms

• Recurrence Relations

• CLRS Chapter 4

19

On Your Own

• PRACTICE PRACTICE PRACTICE with proofs

about asymptotic complexity (there are many

practice problems in the textbook and on old

exams)exams)

20

