<section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>
<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>	Order Notation • $T(n) \in O(f(n))$ if there are constants c and n_0 such that $T(n) \leq c f(n)$ for all $n \geq n_0$
<list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item>	 because of the series of the serie

Justifying the Hacks	More Order Notation
7	• $T(n) \in O(f(n))$ iff there are constants $c \in \mathbf{R}^+$ and $n_0 \in \mathbf{Z}^+$ such that $T(n) \le c f(n)$ for all $n \ge n_0$ • $T(n) \in \Omega$ (f(n)) iff there are constants $c \in \mathbf{R}^+$ and $n_0 \in \mathbf{Z}^+$ such that $f(n) \le c T(n)$ for all $n \ge n_0$ • $T(n) \in \Theta(f(n))$ iff $T(n) \in O(f(n))$ and $T(n) \in \Omega$ (f(n)) • $T(n) \in o(f(n))$ iff for all constants c , there is a constant n_0 such that $T(n) < c f(n)$ for all $n \ge n_0$ • $T(n) \in \omega(f(n))$ iff for all constants c , there is a constant n_0 such that $T(n) > c f(n)$ for all $n \ge n_0$ For my 221ers I defined o and o blatantly wrong! Sorry \mathfrak{S}
Limits Definition of $o/\omega/\Theta$	L'Hôpital's Rule Reminder
• $f(n) \in o(g(n))$ iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$	If $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{0}{0}$ or $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{\infty}{\infty}$
 f(n) ∈ Θ(g(n)) iff lim_{n→∞} for some constant 0 < c 	Then $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{\frac{df(n)}{dn}}{\frac{dg(n)}{dn}}$
• $f(n) \in \omega(g(n))$ iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$	
9	10
Limits Practice	Complexity of Sorting Using Comparisons as a Problem
• Prove that $2^{2^n} \in \omega(n^n)$	Each comparison is a "choice point" in the algorithm. You can do one thing if the
• Prove that $\lg n \in o(n^{0.5})$	the whole algorithm is like a binary tree
11	yes yes a < b no yes a < d no yes a < d no a < d no a < d no a < d a < d no a < d a < d no a < d a < d no a < d a <

Complexity of Sorting Using Comparisons as a Problem

The algorithm spits out a (possibly different) sorted list at each leaf. What's the maximum number of leaves?

Complexity of Sorting Using Comparisons as a Problem

If the tree is *not* at least lg(n!) deep, then there's some pair of orderings I could feed the algorithm which the algorithm does not distinguish. So, it must not successfully sort one of those two orderings.

Ω Practice: Find a Good Bound for lg (n!)

Complexity of Sorting Using Comparisons as a Problem

There are n! possible permutations of a sorted list (i.e., input orders for a given set of input elements). How deep must the tree be to distinguish those input orderings?

Complexity of Sorting Using Comparisons as a Problem

QED: The complexity of sorting using comparisons is $\Omega(\lg (n!))$ in the worst case, regardless of algorithm!

In general, we can *lower-bound* but not *upper-bound* the complexity of problems.

(Why not? Because I can give as crappy an algorithm as I please to solve any problem.)

More Practice: Find Θ-Bound for lg (n!)

(This isn't tightly related to our decision tree proof, except that it shows our Ω -bound is tight.)

17

What's Next?	On Your Own
 Divide and Conquer Algorithms Recurrence Relations CLRS Chapter 4 	 PRACTICE PRACTICE PRACTICE with proofs about asymptotic complexity (there are many practice problems in the textbook and on old exams)
19	20