CPSC 320: Intermediate Algorithm Design \& Analysis

Asymptotic Notation: $(0, \Omega, \Theta, o, \omega)$

Steve Wolfman

Analysis of Algorithms

- Analysis of an algorithm gives insight into how long the program runs and how much memory it uses
- time complexity
- space complexity
- Analysis can provide insight into alternative algorithms
- Input size is indicated by a number n (sometimes there are multiple inputs)
- Running time is a function of $n\left(\mathbf{Z}^{+} \rightarrow \mathbf{R}^{+}\right)$such as $T(n)=4 n+5$
$T(n)=0.5 n \log n-2 n+7$
$T(n)=2^{n}+n^{3}+3 n$
- But...

We'll be fast and loose on the " $\mathrm{R}^{+ \text {" p part.. }}$

Types of asymptotic analysis

- bound flavor
- upper bound (O, o)
- lower bound (Ω, ω)
- asymptotically tight (θ)
- analysis case
- worst case (adversary)
- average case
- expected case
- best case
- "common" case
- "amortized"
- analysis quality
- loose bound (any true analysis)
- tight bound (no better bound which is asymptotically different)

Order Notation

- $T(n) \in O(f(n))$ if there are constants c and n_{0} such that $T(n) \leq c f(n)$ for all $n \geq n_{0}$

Big-O Practice

- Prove that $n^{2} / 2+5 n / 2 \in O\left(n^{2}\right)$
- Prove that $n^{2} / 2+5 n / 2 \notin O(n)$
- Prove that $3^{n} \notin O\left(2^{n}\right)$

Asymptotic Analysis Hacks

- Eliminate low order terms
$-4 n+5 \Rightarrow 4 n$
$-0.5 n \log n-2 n+7 \Rightarrow 0.5 n \log n$
$-2^{n}+n^{3}+3 n \Rightarrow 2^{n}$
- Eliminate coefficients
$-4 n \Rightarrow n$
$-0.5 n \log n \Rightarrow n \log n$
$-n \log \left(n^{2}\right)=2 n \log n \Rightarrow n \log n$

Justifying the Hacks

More Order Notation

- $T(n) \in O(f(n))$ iff there are constants $c \in \mathbf{R}^{+}$and $n_{0} \in \mathbf{Z}^{+}$such that $T(n) \leq c f(n)$ for all $n \geq n_{0}$
- $T(n) \in \Omega(f(n))$ iff there are constants $c \in \mathbf{R}^{+}$and $n_{0} \in \mathbf{Z}^{+}$such that $f(n) \leq c T(n)$ for all $n \geq n_{0}$
- $T(n) \in \theta(f(n))$ iff $T(n) \in O(f(n))$ and $T(n) \in \Omega(f(n))$
- $T(n) \in o(f(n))$ iff for all constants c, there is a constant n_{0} such that $T(n)<c f(n)$ for all $n \geq n_{0}$
- $T(n) \in \omega(f(n))$ iff for all constants c, there is a constant n_{0} such that $T(n)>c f(n)$ for all $n \geq n_{0}$

Limits Definition of o/ ω / Θ

- $\mathrm{f}(\mathrm{n}) \in \mathrm{o}(\mathrm{g}(\mathrm{n}))$ iff $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$
- $\mathrm{f}(\mathrm{n}) \in \Theta(\mathrm{g}(\mathrm{n}))$ iff $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c$ for some constant $0<c$
- $\mathrm{f}(\mathrm{n}) \in \omega(\mathrm{g}(\mathrm{n}))$ iff $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$

L'Hôpital's Rule Reminder

If $\lim _{n \rightarrow \infty} \frac{f(n)}{8(n)}=\frac{0}{0}$ or $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\frac{\infty}{\infty}$
Then $\lim _{n \rightarrow \infty} \frac{\frac{f(n)}{g(n)}}{\frac{d y}{d(n)}} \frac{\frac{d}{d(n)}}{\frac{d(m)}{d n}}$

Limits Practice

- Prove that $2^{2^{n}} \in \omega\left(n^{n}\right)$
- Prove that $\lg \mathrm{n} \in \mathrm{o}\left(\mathrm{n}^{0.5}\right)$

Complexity of Sorting Using Comparisons as a Problem

Each comparison is a "choice point" in the algorithm. You can do one thing if the comparison is true and another if false. So, the whole algorithm is like a binary tree...

Complexity of Sorting Using Comparisons as a Problem

The algorithm spits out a (possibly different) sorted list at each leaf. What's the maximum number of leaves?

Complexity of Sorting Using Comparisons as a Problem

If the tree is not at least $\lg (\mathrm{n}!)$ deep, then there's some pair of orderings I could feed the algorithm which the algorithm does not distinguish. So, it must not successfully sort one of those two orderings.

Ω Practice:

Find a Good Bound for $\lg (n!)$

Complexity of Sorting Using Comparisons as a Problem

There are n ! possible permutations of a sorted list (i.e., input orders for a given set of input elements). How deep must the tree be to distinguish those input orderings?

Complexity of Sorting Using Comparisons as a Problem

QED: The complexity of sorting using comparisons is $\Omega(\lg (n!))$ in the worst case, regardless of algorithm!

In general, we can lower-bound but not upperbound the complexity of problems.
(Why not? Because I can give as crappy an algorithm as I please to solve any problem.)
(This isn't tightly related to our decision tree proof, except that it shows our Ω-bound is tight.)

What's Next?

- Divide and Conquer Algorithms
- Recurrence Relations
- CLRS Chapter 4

On Your Own

- PRACTICE PRACTICE PRACTICE with proofs about asymptotic complexity (there are many practice problems in the textbook and on old exams)

