CPSC 320: Intermediate
Algorithm Design & Analysis

Asymptotic Notation: (O, Q, O, 0, W)
Steve Wolfman

Analysis of Algorithms

* Analysis of an algorithm gives insight into how long the program runs
and how much memory it uses
— time complexity
— space complexity
* Analysis can provide insight into alternative algorithms
* Inputsize is indicated by a number n (sometimes there are multiple
inputs)
* Running time is a function of n (Z* — R*) such as

T(n)=4n+5
T(n)=0.5nlogn-2n+7
T(n)=2"+n3+3n We'll be fast and loose onAthe “R*” part... .
« But If the function goes negative, let’s assume it’s

actually some small positive constant.

Types of asymptotic analysis

* bound flavor

* an

* an

upper bound (O, o)
lower bound (2, ®)
asymptotically tight (0)
alysis case
worst case (adversary)
average case
expected case
best case
“common” case
“amortized”
alysis quality
loose bound (any true analysis)
tight bound (no better bound which is asymptotically different)

Order Notation

* T(n) € O(f(n)) if there are constants c and n,
such that T(n) < c f(n) for all n > n,

Big-O Practice

* Prove that n2/2 + 5n/2 € O(n?)
* Prove that n?/2 + 5n/2 ¢ O(n)
* Prove that 3" ¢ O(2")

Asymptotic Analysis Hacks

* Eliminate low order terms
—4n+5=4n
—0.5nlogn-2n+7=0.5nlogn
—2"+n3+3n=2"

* Eliminate coefficients
—4n=n
—05nlogn=nlogn
—nlog(n?)=2nlogn=nlogn




Justifying the Hacks More Order Notation

* T(n) € O(f(n)) iff there are constants c € R* and
Ng € Z* such that T(n) <c f(n) foralln>n,

* T(n) € Q (f(n)) iff there are constants c € R* and
Ny € Z* such that f(n) <c T(n) foralln > n,

* T(n) € O(f(n)) iff T(n) € O(f(n)) and T(n) € Q (f(n))

* T(n) eo(f(n)) iff for all constants c, thereis a
constant n, such that T(n) < c f(n) for all n > n,

* T(n) ew(f(n)) iff for all constants c, there is a
constant n, such that T(n) > c f(n) for all n > n,

For my 221ers...
| defined o and ® blatantly wrong!

Sorry ®
Limits Definition of o/w/© 'H6pital’'s Rule Reminder
* f(n) € o(g(n)) iff lim:& =0 it lim%e =% or lim%s =2
« f(n) e ©(g(n)) iff lim==< for some o
constant0 < ¢ Then lim Q; = o
n—»>0 dn

- f(n) € w(g(n)) iff lim#=

Complexity of Sorting Using

Limits Practice Comparisons as a Problem

Each comparison is a “choice point” in the
algorithm. You can do one thing if the
comparison is true and another if false. So,

* Prove that Ig n € o(n%5) the whole algorithm is like a binary tree...

* Prove that 52" € w(nM)




Complexity of Sorting Using
Comparisons as a Problem

The algorithm spits out a (possibly different)
sorted list at each leaf. What’s the maximum
number of leaves?

Complexity of Sorting Using
Comparisons as a Problem

There are n! possible permutations of a sorted
list (i.e., input orders for a given set of input
elements). How deep must the tree be to
distinguish those input orderings?

Complexity of Sorting Using
Comparisons as a Problem

If the tree is not at least Ig(n!) deep, then there’s
some pair of orderings | could feed the algorithm
which the algorithm does not distinguish. So, it
must not successfully sort one of those two
orderings.

Complexity of Sorting Using
Comparisons as a Problem

QED: The complexity of sorting using comparisons
is Q(lg (n!)) in the worst case, regardless of
algorithm!

In general, we can lower-bound but not upper-
bound the complexity of problems.

(Why not? Because | can give as crappy an
algorithm as | please to solve any problem.)

Q) Practice:
Find a Good Bound for Ig (n!)

More Practice:
Find ®-Bound for Ig (n!)

(This isn’t tightly related to our decision tree
proof, except that it shows our Q-bound is
tight.)




What’s Next? On Your Own

* PRACTICE PRACTICE PRACTICE with proofs
about asymptotic complexity (there are many
practice problems in the textbook and on old

exams)

* Divide and Conquer Algorithms
* Recurrence Relations
* CLRS Chapter 4




