
CPSC 320: Intermediate

Algorithm Design & AnalysisAlgorithm Design & Analysis

Steve Wolfman

1

Course Learning Goals

• Design algorithms for computational problems

+ Techniques for thinking iteratively and recursively

• Evaluate correctness/performance of algorithms

+ Mathematical tools for handling recurrence relations + Mathematical tools for handling recurrence relations

and summations

• Derive lower bounds on the time (or space or

other resources) it takes to solve a problem

+ Approaches for assessing a problem space and the fit

of a solution to the problem

2

Representative Problem:

Residency Insanity

3

Accomplishments in Resident

Matching

• Clearly defined meaningful terms and symbols
(e.g., preference, matching, stable matching)

• Stated and related versions of the problem
with differing complexity and abstractions with differing complexity and abstractions
(e.g., 1-to-1 vs. many-to-1 matching)

• Formally established whether the problem is
solvable in general

• Formally established properties of our
algorithmic approach, including performance

4

CPSC 320 Terms to Define As We Go

• Problem

• Instance

• Algorithm

• Machine model

5
Note: in 320 we write algorithms to clearly express a solution to other humans.

So, we may use pseudo-code, words, or even pictures, and we often ignore error-checking.

What’s Next?

• Read course policies on the website

– You are expected to become familiar in the next

week with the complete website, including e.g.

grading policiesgrading policies

• CLRS Sections 1, 2, and 3.2 and Appendices

A.1 and B.1-B.3

6

On Your Own

Use the readings to:
– Review CPSC 221

– Consider Insertion-Sort, Selection-Sort, Merge-Sort,
and Stable-Marriage from the perspective of alternate
algorithm design approaches:
• Insertion: Consume input iteratively, maintaining a complete

solution-so-far

• Selection: Produce output iteratively, always producing
correct output-so-far

• Stable-Marriage: Iterative construction and repair of a
solution (a bit like each of insertion and selection)

• Merge: Divide the problem into pieces, solve the pieces, and
merge the solutions (Divide-and-Conquer)

7

