CPSC 320: Tutorial 10

1. You are given a string of n characters, $T[1 \ldots n]$, which looks like a book from which all spaces and punctuation have been removed. (For example, it might be "itwasthebestoftimes...") You want to break the text into a sequence of valid words since you hope that will reveal the original story. You have a dictionary that provides the Boolean function dict():

$$
\operatorname{dict}(w)= \begin{cases}\operatorname{true} & \text { if } w \text { is a valid word } \\ \text { false } & \text { otherwise }\end{cases}
$$

Give a dynamic programming algorithm to determine if the string T can be broken into a sequence of valid words. Your algorithm should take time $O\left(n^{2}\right)$ assuming calls to dict() take constant time.

How would you modify your algorithm to produce the corresponding sequence of words?
2. Given an unlimited number of coins with denominations $x_{1}, x_{2}, \ldots x_{n}$, and an amount A, find the minimum number of coins needed to make the amount A or output "impossible" if amount A cannot be made.

Your algorithm should run in time $O(n A)$.
Why doesn't greedy work?

