
Practice Midterm 2 (answers on the back)
On the midterm, you may use any algorithm described in class without giving its pseudocode or
re-deriving its running time.

1. Indicate whether the following statements are True or False. You do not need to give a proof.

If G = (V,E) is a connected, undirected graph then the minimum spanning tree of G
contains the |V | − 1 edges whose weights are smallest.

Kruskal’s minimum spanning tree algorithm does not always produce a minimum span-
ning tree if the connected, undirected graph has negative weight edges.

Any correct algorithm to determine if an array of n ≥ 2 bits contains a 0 followed
(immediately) by a 1 must examine every bit in the worst case.

Every connected, undirected graph G contains a vertex whose removal from G keeps G
connected. (Removing a vertex from a graph implies removing all its adjacent edges.)

The expected number of times I need to toss a coin that comes up “heads” with proba-
bility 1/3 until I get a “head” is 3.

2. Let G = (V,E) be an undirected weighted graph, and let F be a subgraph of G that is a
forest (i.e. F does not contain any cycles). Design an efficient algorithm to find a spanning
tree in G that contains all the edges of F , and has minimum cost among all spanning trees
containing F .

3. Suppose we want to broadcast a message from a particular machine A to all the machines
it can reach. We want to minimize the time it takes for the message to reach each of these
machines. We know, for every link (A, B), the delay d(A, B) caused by sending a message
from A to B across this link. (If no such link exists, the delay is infinite.) We also know,
for every machine B, the delay t(B) in re-transmitting a message through that machine.
Thus, if the message travels from A to B and then from B to both C and D, it takes time
t(A) + d(A, B) + t(B) + d(B, C) to reach C and t(A) + d(A, B) + t(B) + d(B, D) to reach D.
Describe an efficient algorithm that finds the optimal forwarding strategy for each machine
in order to minimize the time for a message from machine A to reach each other (reachable)
machine. A forwarding strategy specifies, for each machine, the machines to re-transmit an
incoming message to. The total number of re-transmissions should be n− 1.

4. There are n houses on the north side of Main Street. The city wants to determine where to
place a fire station on the vacant south side of Main Street so that the sum of the distances
from each house to the fire station (as measured along Main Street) is minimized.

Let xi be the location of the ith house on Main Street. The city wants to find a value y such
that

n∑
i=1

|xi − y|

is minimized.

What value of y works? Prove that it does. Describe an efficient algorithm that finds this
value of y.



Solution Sketches

1. False.

False.

False.

True.

True.

2. Run Kruskal’s algorithm on G, but start with F as the initial set of edges. In other words, insert
the edges of F into the minimum spanning tree first.

3. Create a directed graph G with two vertices Xin and Xout for each machine X. The edges of the
graph G are (1) (Xout, Yin) with weight d(X, Y ) for each link (X,Y ); and (2) (Xin, Xout) with
weight t(X) for each machine X.

The length of a path in G from Ain to Xin is the delay to send a message from machine A to
machine X. Run Dijkstra’s single source shortest paths algorithm to find the shortest paths from
Ain to all other vertices in G. The children of Xout in this tree are the machines that X should
re-transmit messages to. The total number of retransmissions is n − 1. The running time is
O((n + m) log n) where n is the number of machines and m is the number of links.

4. The median of x1, . . . , xn works.

For convenience in the proof, reorder the xi so that x1 ≤ x2 ≤ · · · ≤ xn. Consider the contribution
|xi − y| + |xn−i+1 − y| to the total sum for each pair of houses xi, xn−i+1 for 1 ≤ i ≤ bn/2c.
The smallest contribution, (xn−i+1 − xi), is obtained if y lies between xi and xn−i+1. Thus

n∑
i=1

|xi − y| ≥
bn/2c∑
i=1

xn−i+1 − xi.

Choosing y to be the median of x1, . . . , xn achieves this lower bound.

The running time to find y is O(n) using linear time k-Select.


