
Practice Midterm 1 (answers on the back)
1. Indicate whether the following statements are True or False. Assume n, f(), g(), and h() are

positive and n is an integer You do not need to give a proof.

n2 ∈ O(n3).

If f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)) then f(n) ∈ O(h(n)).

If f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)) then f(n) + g(n) ∈ O(h(n)).

f(n) ∈ O(g(n)) if and only if g(n) ∈ Ω(f(n)).
√
n ∈ O(nsin n) where sinn means sin of n degrees.

2. Describe a Θ(n log n)-time algorithm that, given a set S of n real numbers and another real
number x, determines whether or not there exist two elements of S whose sum is exactly x.

3. Suppose that you are given n red and n blue water jugs. For every red jug there is a blue jug
that holds the same amount of water, and vice versa. Your task is to pair-up each red jug
with the blue jug that holds the same amount of water. The only operation you may perform
is to pick a red jug and a blue jug, fill the red jug with water, and then pour the water into
the blue jug. This will tell you if the red or the blue jug can hold more water, or if they can
hold the same amount. Note: You may not directly compare two red jugs or two blue jugs.

Prove that the number of operations you must perform to pair up the jugs is Ω(n log n).

4. Use a recursion tree to give an asympotically tight solution to the recurrence T (n) = T (αn)+
T ((1− α)n) + cn, where α is a constant in the range 0 < α < 1 and c > 0 is also a constant.



Solution Sketches

1. True. n2 ≤ n3 ⇐⇒ 1 ≤ n.

True. f(n) ≤ cg(n) (for all n ≥ n0) and g(n) ≤ dh(n) (for all n ≥ n1) implies f(n) ≤ cdh(n)
(for all n ≥ max{n0, n1}).

True. f(n) ≤ cg(n) (for all n ≥ n0) and g(n) ≤ dh(n) (for all n ≥ n1) implies f(n) + g(n) ≤
(cd+ d)h(n) (for all n ≥ max{n0, n1}).

True. f(n) ≤ cg(n) (for all n ≥ n0) implies g(n) ≥ 1
cf(n) (for all n ≥ n0). Since c > 0, 1/c > 0.

False. If n is a multiple of 180 degrees sinn = 0, so
√
n > cnsin n for any constant c for all

n = 180k > c2.

2. Sort S to obtain a sorted list of its elements s1 ≤ s2 ≤ · · · ≤ sn. Consider s1 + sn. If s1 + sn < x
then s1 can’t be one of the two numbers whose sum is x because even adding the largest number
(sn) to it results in a number smaller than x. Similarly, if s1 + sn > x then sn can’t be one of the
two numbers whose sum is x. In either case, we eliminate one number from consideration and
are left with the identical problem with one fewer number. We used constant time to eliminate
one number, so the time, after sorting, to find the two numbers whose sum is x (or to eliminate
all pairs) is O(n). The total time of the algorithm is thus dominated by the time to sort which is
O(n log n).

3. We can model any algorithm using a decision tree in which each internal node represents a
comparison of a red and blue jug that has 3 outcomes (red < blue, red = blue, red > blue).
Since no other operations are permitted, the outcome of a sequence of such comparisons must
determine a unique pairing of red and blue jugs. So every leaf of the decision tree represents
at most one possible pairing. There are n! possible pairings that the algorithm must be able to
distinguish and thus the decision tree has at least n! leaves. Since the number of leaves is at
most 3depth, the depth of the decision tree (which is the worst case number of comparisons you
perform) is at least log3(n!) ∈ Ω(n log n).

4.
cn

cαn c(1− α)n

cα2n c(1− α)αn cα(1− α)n c(1− α)2n

cn

cn

cn

∑logA n
i=0 cn ≤ T (n) ≤ ∑logB n

i=0 cn

Here A = max{1/α, 1/(1 − α)} and B = min{1/α, 1/(1 − α)}. The leaf costs are at most a
constant times the internal node costs, so T (n) ∈ Θ(n log n).


