1. Let $F[i, X]$ be the value of the most valuable combination of items of weight at most X from items $1,2, \ldots, i$. The optimal solution to obtain value $F[i, X]$ either (1) includes item i (if it fits) and an optimal solution using items $1,2, \ldots, i-1$ with knapsack capacity $X-w_{i}$, or (2) excludes item i and is an optimal solution using items $1,2, \ldots, i-1$ with knapsack capacity X.

$$
F[i, X]= \begin{cases}\max \left\{F\left[i-1, X-w_{i}\right]+v_{i}, F[i-1, X]\right\} & \text { if } w_{i} \leq X \\ F[i-1, X] & \text { otherwise }\end{cases}
$$

$F[0, X]=0$ for integers X between 0 and $W . F[i, 0]=0$ for integers i between 0 and n.

```
\(\operatorname{Knapsack}\left(v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{n}, \mathrm{~W}\right)\)
    for \(X:=0\) to \(W F[0, X]:=0\)
    for \(i:=0\) to \(n F[i, 0]:=0\)
    for \(i:=1\) to \(n\)
        for \(X:=0\) to \(W\)
            \(F[i, X]:=F[i-1, X]\)
            if \(w_{i} \leq X\) and \(F[i, X]<F\left[i-1, X-w_{i}\right]+v_{i}\) then
                    \(F[i, X]:=F\left[i-1, X-w_{i}\right]+v_{i}\)
\(\mathrm{X}:=\mathrm{W}\)
for \(i:=n\) to 1
        if \(F[i, X]>F[i-1, X]\) then
            print i
            \(X:=X-w_{i}\)
```

2. For $i \leq j$, let $A[i, j]$ be the length of a longest palindromic subsequence of $X[i \ldots j]$. If $X[i]=X[j]$ then such a palindromic subsequence is $X[i]$ followed by a longest palindromic subsequence of $X[i+1 \ldots j-1]$ followed by $X[j]$. If $X[i] \neq X[j]$ then such a palindromic subsequence is either a longest palindromic subsequence of $X[i+1 \ldots j]$ or of $X[i \ldots j-1]$ since both $X[i]$ and $X[j]$ cannot contribute. For $i<j$,

$$
A[i, j]= \begin{cases}A[i+1, j-1]+2 & \text { if } X[i]=X[j] \\ \max \{A[i+1, j], A[i, j-1]\} & \text { otherwise }\end{cases}
$$

$A[i, i]=1$ for all i between 1 and $n . ~ A[i, i-1]=0$ for all i between 2 and n.

```
PalindromicSubseq \((X[1 \ldots n])\)
    for \(i:=1\) to \(n A[i, i]:=1\)
    for \(i:=2\) to \(n A[i, i-1]:=0\)
    for \(d:=1\) to \(n-1\)
        for \(i:=1\) to \(n-d\)
            \(j:=i+d\)
            if \(X[i]=X[j]\) then \(A[i, j]:=A[i+1, j-1]+2\)
            else \(A[i, j]:=\max \{A[i+1, j], A[i, j-1]\}\)
return \(A[1, n]\)
```

