> The grading policy for this homework is as follows: If you leave a question blank, you receive 1 point for that question. If you answer a question, the question will be graded on a scale from 0 to 5 . This homework has two questions.
> You do not need to rewrite the question or copy down pseudo-code that was presented in class.

1. Knapsack problem A thief carrying a knapsack enters a store. The knapsack can hold at most W pounds. There are n items the thief can steal. Item i (for $i=1,2, \ldots, n$) has weight w_{i} (a positive integer) and value v_{i}. Describe a dynamic programming algorithm to find the most valuable combination of items the thief can fit in his knapsack. The algorithm should run in time $O(n W)$.
Hint: The common subproblems could have the form "Choose the most valuable set of items of weight at most X from items $1,2, \ldots, i$."
2. (from Exercise 6.7 in Algorithms by Dasgupta, Papadimtriou, and Vazirani) A subsequence is palindromic if it is the same whether read from left to right or right to left. For instance the sequence

$$
A, C, G, T, G, T, C, A, A, A, A, T, C, G
$$

has many palindromic subsequences, including A, C, G, C, A and A, A, A, A, A (on the other hand, A, C, T is not palindromic). Devise an algorithm that takes a sequence $X[1 \ldots n]$ and returns the length of the longest palindromic subsequence of X. Its running time should be $O\left(n^{2}\right)$.

