1. Consider the three jobs $A=(0,5), B=(1,2)$, and $C=(3,4)$.
$\frac{A}{\bar{B} \quad \bar{C}}$

The optimal solution is $\{A\}$ with length 5 .
(a) This version considers the jobs in the order A, C, B. It calculates last $[1,2,3]=[0,0,2]$ and $L[0,1,2,3]=[0,5,5,6]$, returning 6 .
(b) This version considers the jobs in the order A, B, C. It calculates last $[1,2,3]=[0,0,2]$ and $L[0,1,2,3]=[0,5,5,6]$, returning 6 .
(c) works. See problem set 6 explanation.
2. The cheapest way to get from city 1 to city n must stop at some last city k and then go directly from city k to city n. Let $F[i]$ be the cheapest rental cost to canoe from city 1 to city i.

$$
\begin{aligned}
& F[i]=\min _{1 \leq k<i}\left\{F[k]+p_{k i}\right\} \quad \text { for } i=2,3, \ldots, n \\
& F[1]=0
\end{aligned}
$$

The actual algorithm is a simple for-loop:

```
CheapestCost \(\left(p_{i j}\right.\) for \(\left.1 \leq i<j \leq n\right)\)
    \(F[1]=0\)
    For \(i=2\) to \(n\)
    \(F[i]=\min _{1 \leq k<i}\left\{F[k]+p_{k i}\right\}\)
    Return \(F[n]\)
```

3. The maximum sum contiguous subsequence that ends at position j is either the empty subsequence or the maximum sum contiguous subsequence that ends at position $j-1$ plus a_{j}. Let $S[j]$ be the sum of the maximum sum contiguous subsequence that ends at position j.

$$
\begin{aligned}
& S[j]=\max \left\{0, S[j-1]+a_{j}\right\} \quad \text { for } j=1,2, \ldots, n \\
& S[0]=0
\end{aligned}
$$

$\operatorname{MaxSumSubsequence}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
$S[0]=0, m=0$
For $j=1$ to n
$S[j]=\max \left\{0, S[j-1]+a_{j}\right\}$
If $S[j]>S[m]$ then $m=j$
$j=m$
While $j>0$ and $S[j]=S[j-1]+a_{j}$

$$
j=j-1
$$

Return $a_{j+1}, a_{j+2}, \ldots a_{m}$

